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Abstract 

A convection experiment was done with a rotating rectangular tank as a model of oceanic 
meridional overturning circulation. Heat flux was fixed at one bottom end of the tank using 
an electrical heater. Temperature was fixed at the other end using a cooling plate. All other 
boundaries were insulated. The cross sections of temperature field were made at several 
locations. In equilibrium, the heat input to the fluid H was the same as the meridional heat 
flux (heat flux from the source to the sink), so it was possible to find a scaling law relating 
H to the temperature difference across the tank AT and rotation rate /. The experimental 
result suggests that the meridional heat transport in the experiment was mostly due to 
geostrophic flows with a minor correction caused by the bottom friction. If there was 
no friction, the scaling law from the experiment resembles the one verified in part in the 
numerical model by Bryan and Cox (1967). Flow visualization and temperature sections 

showed that there were meridional geostrophic currents that transported heat. When the 
typical values of the North Atlantic are introduced, the geostrophic scaling law predicts 
meridional heat flux comparable to that estimated in the North Atlantic when the vertical 
eddy diffusivity of heat is about lcm2s_1. 

Naturally, this experiment is a only crude model of the oceanic convective circulation. 
We do not claim that the geostrophic scaling applies in detail to the oceans, however, it 
may have some important use in climate modeling. For example, almost all existing box 
models and two-dimensional numerical models of ocean circulation use a frictional scaling 
law for buoyancy transport. A box model with the geostrophic scaling law is shown to 
be more robust to a change in the boundary forcing so that it is less likely to have a 
thermohaline catastrophic transition under the present conditions. It is also shown that a 
restoring boundary condition for salinity introduces stability to a thermal mode circulation, 
unless the restoring time for salinity is several orders of magnitude larger than that for 
temperature. 
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Chapter 1 

Introduction 

The local imbalance between the solar radiation and the earth's back radiation generates 

a meridional temperature gradient on the surface of the oceans. The temperature gradient 

drives a well-known vertical convective oceanic circulation. Water in the polar oceans loses 

heat to the atmosphere, becomes dense, and then sinks to some depth, forming the deep 

water mass. The water mass flows away from the polar regions and ultimately upwells to 

the surface to compensate for the sinking. This water gains heat from solar radiation and 

becomes warm surface water, which then flows toward the polar oceans to satisfy continuity, 

thus completing the cycle. 

The meridional convective circulation is believed to be important in maintaining the 

climate of the earth and oceans in two ways. First, the oceanic currents carry half of the 

heat accumulated in the equatorial regions toward the pole (Vonder Haar and Oort, 1973), 

and compensate the imbalance of the solar radiation and the earth's back radiation. They 

help to reduce the temperature contrast between the equatorial region and the polar region. 

Second, the circulation supplies cold water to the upper ocean that balances downward heat 

diffusion from the surface and helps to maintain the thermocline where temperature changes 

rapidly. 

The most prominent characteristic of oceanic convection is a highly asymmetric circu- 

lation pattern.   The sinking or "deep water mass formation" is confined to some narrow 



polar regions. The upwelling is believed to occur throughout most of the oceans with the 

exception of the sinking regions. Another asymmetry in the pattern is that most of the 

vertical temperature gradient is confined to the upper 1000m or so of the oceans in a region 

called the thermocline; the interior of the oceans shows very small vertical temperature 

gradient compared to that in the thermocline. 

Many studies, called thermocline theories, explain how buoyancy forcing and wind stress 

at the sea surface penetrates to great depths, and creates such a vertical temperature 

structure in the interior of the oceans (for reviews see Welander; 1986, Pedlosky; 1987, 

and Huang; 1995). Although it is evident that the thermocline of the oceans is similar 

to the thermal boundary layer of the circulation driven by differential surface heating, the 

thermocline theories have not treated the thermocline as a part of convection. In most 

convection studies, heat transport has been a major goal, but in the thermocline theories, 

heat transport has not been considered. Furthermore, the thermocline theories cannot 

explain why the water mass formation region is small. 

Studies on convection driven by differential surface heating have been successful in 

showing the small size of water mass formation regions. A horizontal thermal boundary layer 

along with an interior of very small vertical temperature gradient was also observed. Even 

studies of convection in non-rotating frames such as those by Rossby (1965) and Beardsley 

and Festa (1972) showed the asymmetric circulation pattern. According to Rossby (1965), 

"The interior is advectively warmed, hence its temperature is an average of the warm fluid 

supplying it. The heat is withdrawn from it by forcing the warm fluid (by continuity) down 

against the bottom where it is cooled by conduction. Hence the asymmetry is just a measure 

of the efficiency by which heat is transported by convection and conduction." These studies 

might suffice for a brief qualitative explanation of the oceanic convective circulation, but 

they lack some important factors of the oceanic environment. For example, rotation is an 

important factor in the dynamics of large scale oceanic flow. 

Most of the studies on rotating convection were done using rotating annuli and these 

mainly had atmospheric applications.  One of the most important geometrical differences 



between the atmosphere and oceans is that the atmosphere covers all topography and 

has no lateral boundaries, whereas most oceans, except the Southern Ocean, are bounded 

meridionally by continents. In the atmosphere, a zonal pressure gradient supported by 

continents is small, and consequently a meridional geostrophic flow, which is in the direction 

of the applied temperature gradient, is weak. The heat transport from the equatorial region 

to the polar region is principally provided by weak ageostrophic flows, eddies and Ekman 

fluxes, instead. In the oceans (except the Southern Ocean where there is no meridional 

boundary), meridional boundaries support a zonal pressure gradient that allows meridional 

geostrophic flows parallel to the applied temperature gradient. The geostrophic flows, thus, 

are capable of transporting heat from the equatorial oceans (the source of heat) to the polar 

oceans (the sink of heat). 

Numerical studies on large scale ocean circulation showed that meridional geostrophic 

flow is important in meridional heat transport. For example, Bryan and Cox (1967) derived 

a scaling law for meridional heat transport based on geostrophy and advective-diffusive 

heat balance, and confirmed the relation with their numerical circulation model. Colin de 

Verdiere (1988) also showed that the meridional heat transport in his numerical experiment 

is due to a direct Hadley cell (or vertical circulation cell). In laboratory experiments on 

thermally driven circulations in a rotating frame, the nature of vertical convective circulation 

in the presence of meridional boundaries is different from that in an annulus. Condie (1989) 

and Condie and Griffiths (1989) observed flows that carried heat from the source to the 

sink. In Speer and Whitehead (1988), horizontal gyres were observed. 

Direct estimations using hydrographic data (Bryden and Hall, 1980; Hall and Bryden, 

1982) also showed that vertical convective circulation is important in meridional heat trans- 

port in the North Atlantic. In the North Pacific, however, due to the lack of deep water mass 

formation, the meridional heat transport is mostly due to wind-driven circulation (Bryden 

et al; 1991). It is interesting to note that the North Pacific is about twice as large as the 

North Atlantic, but the meridional heat transport in the North Pacific is about half of that 

in the North Atlantic (Bryden and Hall, 1980; Bryden et al, 1991). 



One way of studying the physics of a phenomenon is to find scaling laws between the 

parameters. In rotating convection driven by differential heating, the external parameters 

are the temperature forcing AT, the rotation rate / and geometrical constants related to the 

container and physical properties of the test fluid. The internal parameters are temperature 

and velocity distributions and heat transport. 

If one can find correct scaling laws by whatever means, they can be quite useful in climate 

studies. In some climate models, major balances in the equation of motion are implemented 

as simple relations based on assumptions that were not verified. For example, in box models 

for the thermohaline catastrophe, circulation strength is determined by a scaling law based 

on a balance between north-south pressure gradient and frictional drag proportional to the 

strength of the circulation (Stommel, 1961; Marotzke, 1990; Thual and McWilliams, 1992; 

Huang et al, 1992). This is also true for zonally averaged or two-dimensional circulation 

models such as studies by Marotzke et al. (1988), Thual and McWilliams (1992) and Quon 

and Ghil (1992). Since the frictional scaling law is set at the value that is appropriate for 

the present oceans, its value is applicable by definition only to the present oceans. However, 

studies on the thermohaline catastrophe are dealing with oceans whose density structure 

varies widely. The predictions of transitions using the frictional relation may not be correct. 

One can ask "Don't we have scaling laws for a convective circulation in rotating con- 

tainers?" There are a few scaling laws based on different dynamics. Using geostrophy and 

advective diffusive heat balance, one can derive a scaling law for a convective circulation in 

a rectangular container (Bryan and Cox, 1967; Welander, 1986; Whitehead, 1991). When 

meridional temperature (buoyancy) forcing is applied along the surface of water in a rect- 

angular container, the meridional boundaries of the container allow zonal pressure gradient. 

The pressure gradient supports meridional geostrophic flows that carry heat from a source 

to a sink. This scaling law is equivalent to the classical thermocline theory by Robinson 

and Stommel (1959). 

Another scaling law is for laminar flows in rotating annuli (Stern, 1975; Hignett et 

al., 1981).  There are no vertical boundaries in the meridional (radial) direction, which is 
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parallel to the applied temperature gradient, so that the meridional geostrophic flows from 

the source to the sink of heat are not possible. Instead, the thermal forcing drives zonal 

(axial) geostrophic flows, which are perpendicular to the applied temperature gradient. 

These flows cannot transport heat directly, but they drive the meridional Ekman flows next 

to the horizontal boundaries. These frictional flows are parallel to the temperature gradient, 

and are capable of transporting heat in the meridional direction. 

Using baroclinic instability, one can drive another scaling law (Green, 1970; Stone, 

1972). When isotherms get shallower to the north, zonal flows can be unstable so that they 

produce baroclinic eddies that are capable of transporting heat in a meridional direction. 

The details of the above theories are described in Section 2.1. 

One can also ask "Which one of the three mechanisms is most effective for oceanic 

convective circulation?" Considering that the oceans, excluding the Southern Oceans, have 

meridional boundaries from the continents and there are well defined large scale meridional 

flows, the one based on geostrophic flows looks more reasonable for the oceanic convective 

circulation. There have been only a few physical studies concerning the validity of those 

scaling laws, however. In simplified numerical models such as zonally averaged models (for 

instance Marotzke et al., 1988), a priori assumptions between the meridional mass flux and 

meridional pressure gradient were made to close the models. Therefore, they do not contain 

unbiased scaling laws for heat flux and mass flux. 

Three dimensional numerical models that do not make such a priori assumptions could 

conceivably be used to determine a scaling relation. In experiments by Bryan (1987) and 

Colin de Verdiere (1988) on thermally driven circulation, the thermocline thickness and the 

meridional heat transport follow a simple scaling law based on geostrophy and advective 

diffusive heat transport (Bryan, 1991). A circulation driven by fresh water flux at the surface 

follows a similar scaling law based on geostrophy and advective-diffusive salt balance (Huang 

and Chou, 1994). In the numerical studies on thermally driven circulation, the focus was 

given to the dependence of the circulation on the vertical heat diffusivity «. A functional 

relation between buoyancy forcing and convective circulation, which has not been considered 
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in those studies, must be equally important for climate, since a change in buoyancy forcing 

modifies convective circulation and subsequently climate, and vice versa. 

With a laboratory experiment with a fluid one does not have to make any a priori 

assumptions about dynamics. It is also often easy to change and explore wide ranges of 

parameters so that one can find relations among a number of parameters (scaling laws). 

The isolation of phenomena of interest is also easy. The Rayleigh number, which is one of 

the most important parameters of convection and represents the ratio of buoyancy forcing 

to viscous dissipation and heat diffusion, can be several orders of magnitude larger in 

a laboratory fluid than in a numerical model. Most earlier laboratory experiments on 

circulation driven by differential heating along a horizontal surface, however, did not have 

enough precision to find a scaling law for thermal convection. 

In this thesis, an experimental study on circulation driven by differential bottom heating 

in a rotating frame has been performed. The experiment is intended to understand the basic 

physics of rotating convection in a square container and hence the thermal component of 

the thermohaline circulation. Given a surface heat flux distribution, we seek to answer the 

following main questions with the experiments: 

1. What are the scaling laws governing the temperature field and heat transport? 

2. What does the convective flow field look like? 

3. What are the strength and limitations of this experiment as a model of oceanic 

thermal circulation? 

In Chapter 2, previous experimental, theoretical and numerical studies on meridional 

overturning circulation and their scaling laws for the circulation are reviewed. The exper- 

iment and the results are also described in the chapter. Scaling laws are compared with 

the data from the experiment, and the more successful ones are discussed. The implication 

of the experimental results to oceanic thermal convection are discussed. In Chapter 3, the 

results from the experiment were applied to a simple climate model. A simple two-box 

model based on Stommel (1961) but utilizing the scaling law from the present experiment 

was developed. The effects of oceanic meridional buoyancy transport on the stability and 

12 



climate of thermohaline circulation were studied. The effects of air-sea fresh water (salt) 

exchange parameterization on the stability were also studied and compared with those of 

the meridional buoyancy transport. A brief summary and conclusion are drawn in Chapter 

4. 

13 
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Chapter 2 

Convection Driven by Differential 

Bottom Heating 

2.1    Previous Studies 

2.1.1    Non-rotating System 

Rossby (1965) developed a scaling law for convective circulation driven by differential surface 

heating in a non-rotating system. A temperature difference AT was maintained along the 

bottom of a tank, and all other boundaries were insulated. The configuration is equivalent to 

an upside-down, non-rotating ocean. A highly asymmetric convection cell, which consisted 

of a narrow rising region, a thin thermal boundary layer along the bottom, and an interior 

of almost uniform temperature was observed as can be seen in Fig. 2.1. 

The balance between buoyancy forcing and vertical viscous dissipation in the thermal 

boundary layer, 

vvzzz K. agTy, 

yields a meridional velocity scale Vn 

agATSl 

Vly 

Here, y is the meridional direction, which is parallel to the temperature gradient at the 

bottom, z is positive upward, ÖTU is the thickness scale of a thermal boundary layer, AT is 
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29.6 °C 34.4°C 

Figure 2.1: A temperature section from Rossby (1965) (Fig. 5b in the paper). A thermal 
boundary layer and an interior of nearly uniform temperature can be seen. Note that 
isotherms are not drawn at equal intervals. 

thermal forcing, v is the meridional velocity, ly is the length of the tank, g is gravitational 

constant, a is the thermal expansion coefficient, v is the kinematic viscosity of water, and the 

subscript 'n' represents a non-rotating system. In the heat equation, the balance between 

advection and vertical diffusion in the thermal boundary layer, 

wTz m KT,, 

yields a vertical velocity scale Wn 

Wn = 
K 

where w is vertical velocity and K is the thermal diffusivity of water. If we use continuity 

Wn 
Vn = ly 

then 

Vn 
Kly 

w 
The replacement of Eq. 2.2 in Eq. 2.1 yields 

STn    =   lyRa-x'b (~ AT"1/5) ,   and 

Qn   =   KRa1'5 (~ AT2/5) , 

16 
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(2.3) 



where Rayleigh number Ra = agATl3/vK, and Qn = Vn8rn is the mass transport in the 

thermal boundary layer per unit width of the tank. By comparing his experimental results 

(Table 2 in Rossby, 1965) and the estimations from the scaling law (Table 3 in the paper), 

one can find linear relations between them as follows: 

STexp    «   l.l*r„ 

The scaling law compares well with the experimental results. In the thermal boundary 

layer, the water flows from the cold end to the hot end, and the meridional heat flux Hn 

per unit width is, 

Hn = p0CpATQn ~ Ra6/5 (~ AT6/5) . (2.4) 

In the numerical experiment by Somerville (1967), the circulation pattern is slightly 

asymmetric and H ~ Ra8/5 (AT8/5). The results are different from those of Rossby (1965). 

In the numerical study, 10 < Ra < 104 and it is much smaller than the range 106 < Ra < 109 

in Rossby (1965). Using a numerical study, Beardsley and Festa (1972) showed that when 

Ra sa 105, the power dependence of H on Ra changes from Somerville's to Rossby's. The 

asymmetry in the circulation intensified as Ra increases (Fig. 1 in the paper). We can 

deduce that the asymmetry in the circulation is the nature of convection in the limit of 

large Ra. 

Nelken (1987) assigned heat flux instead of temperature along the top boundary of a 

non-rotating box in his numerical study, and claimed different scaling laws as follows: 

Qn ~ Raj (~ Hn   ),    and 

*rB~i2a71/6(~Jff^
6). 

In his work, heat flux H was fixed, so the flux Rayleigh Number Raf = Hd/p0CpK. Since 

ATQn ~ Hn, 

AT ~ Ra5/6. 

If we rewrite Nelken's (1987) scaling laws using Ra (or AT), although it is not an external 

parameter, 

STn ~ Ra-1/5 (~ AT'1/5) ,   Qn ~ Ra'1/5 (~ AT1/5) 
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and Hn ~ Ra?/5 (~ AT6/5) . 

Therefore, Nelken's (1987) and Rossby's (1965) scalings were equivalent, although Nelken 

(1987) compared differently defined Rayleigh numbers without appropriate conversion and 

concluded that convection with a heat flux boundary condition yields different scaling laws 

from those with a temperature boundary condition. 

2.1.2    Ekman Scaling Law 

A rotating annulus or "dishpan" has been used in many studies about convective circu- 

lation. Through the thermal wind balance, a meridional (radial) temperature difference 

AT, which is imposed externally, drives a zonal (axial) geostrophic flow in the interior, as 

sketched in Fig. 2.2. The zonal flow is perpendicular to the applied temperature gradient 

so it cannot transport heat. At the horizontal (top and bottom) boundaries, a no slip con- 

dition is satisfied and Ekman layers are established. In the Ekman layers, the geostrophic 

zonal velocity becomes weaker due to the friction and the Coriolis force cannot balance the 

meridional pressure gradient. Ekman fluxes, which are parallel to the temperature gradient 

and are capable of transporting heat, are induced by the interior zonal geostrophic flow. 

Almost all of the meridional mass and heat transport is due to the Ekman fluxes in the top 

and bottom Ekman layers. Thus, the scaling law described in this section will be called an 

Ekman scaling law. 

Hignett et al. (1981) developed scaling laws in a rotating annulus with a differentially 

heated bottom in several different regimes, which depend on / and AT. Each regime can be 

defined using the ratio of the thermal boundary layer scale of Rossby (1965) (Eq. 2.1.1(a)) 

to the Ekman depth 6E = dE1/2, where Ekman number, E = 2v/fd2, and is d the depth 

of a container. The square of the ratio 

r=(^.y = Ra-^E-1 fitf ~ /AT"2/5 (2.5) 

represents the importance of rotation. Here, ly is the length of the container which for 

annuli would be the difference between inner and outer radii. 
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(b) a meridional section 

Figure 2.2: Schematic convective flow pattern in a rotating annulus. (a) a perspective view 
and (b) a radial (meridional) section (adapted from Stern's (1975) Fig. 12.2). The interior 
zonal (axial) geostrophic flows (<g> and 0) are perpendicular to the applied temperature 
gradient. These cannot transport heat directly from the hot end to the cold end. The 
Ekman fluxes (thin arrows) which are driven by the interior geostrophic flows, are in the 
direction of the temperature gradient and transport the heat. 
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When rotation is weak (r < 1), the scaling law for the thermal boundary is basically the 

same as that of Rossby (1965). As the rotation becomes strong (r ~ 0(1)), the increased 

Ekman spiral tendency reduces Qe, and thickens the thermal boundary layer. Here the 

subscript 'e' is for a quantity related to the Ekman scaling law. For fast rotation rates 

(r > 0(1)), the thermal boundary layer is thicker than the Ekman layer, and the thermal 

wind balance away from the Ekman layer, 

-fuz = gaTy, 

yields interior zonal geostrophic velocity scale U( e 

Ue = £%^. (2.6) 
fly 

In the heat equation, the balance between vertical advection and vertical diffusion, 

wlz ~ Klzz, 

yields vertical velocity scale We 

We = £-. (2.7) 

Meridional mass flux per unit area within the thermal boundary layer Qe, which is the 

Ekman flux driven by the zonal flow, is (Pedlosky, 1987) 

Qe = \ue6E. (2.8) 

Since there is no zonal variation (d/dx = 0) and no meridional geostrophic flow in the 

interior (v = 0), continuity gives wz = 0 in the interior away from the top and bottom 

Ekman layers. The variation of w is confined to the Ekman layers so 

We = 5-&. (2.9) 
ly 

The above relations can be written using thermal forcing AT and physical and geomet- 

rical constants as follows: 

v(ganAT) 

1 Qe     =     I  73  i     and 

STe    =   I 
K2/3     V4 (2-10) 

y
 * v(gaAT)2 
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The meridional heat flux per unit area He/lx is then 

The regime r > 0(1) is the same as that of Stern (1975), so both studies show the same 

scaling law. When r » 1, the thermal boundary layer extends beyond the depth of the 

annulus. The temperature field satisfies Laplace's equation. Meridional heat transport is 

due to diffusion so it becomes independent of /. 

Fig. 2.3(a) is a meridional temperature section of Hignett et aVs (1981) experimental 

results (Fig. 3 of their paper) when / = 0. A thermal boundary layer near the bottom can 

be seen clearly. Fig. 2.3(b) (Fig. 4 of their paper) is a meridional temperature section with 

fast rotation (r = 2.88). A thicker thermal boundary layer was observed, as their theory 

(Eq. 2.10(b)) predicted. However, due to the technical difficulty of making accurate heat 

flux measurement, they could not verify their scaling law for heat flux. 

In an annulus, the pattern of the flow field is effectively two dimensional since merid- 

ional geostrophic flow is not possible. In the oceans, however, the flow field is three dimen- 

sional so the meridional geostrophic velocity is comparable to the zonal geostrophic velocity. 

Observations (Hall and Bryden, 1982) showed that the meridional geostrophic velocity is 

important in the meridional heat transport. The scaling law for an annulus may not be 

applicable to the oceans. 

2.1.3    Baroclinic Eddy Scaling Law 

Convection in an annulus or dishpan shows an interesting phenomenon, regardless of the 

way that buoyancy forcing was imposed. When rotation is slow, flow is axially symmetric 

and a direct meridional circulation cell appears along with zonal flow. This symmetric 

flow is usually called the Hadley regime, since it resembles the symmetric component of 

the atmospheric circulation identified by Hadley. When rotation becomes fast, baroclinic 

instability develops so irregular wave-like fluctuations and meandering zonal jets form. This 

type of flow is usually called the Rossby regime.   If rotation becomes even stronger, the 

21 



FIGURE 3 A radial temperature cross-section at r = 0. Ra = 2-34 x 10», working flu.d water, 
d =Tocm The isotherL are expressed as fractions of AT and were draw subjectively from 
vertical temperature profiles at the arrowed positions. The gradients above about 1cm are too 

weak to include. 

X 

01 0-7 0-8 0-9 
t + i 

FIGURE 4 As for figure 2 except r= 2-88, Ra = 2-38 x 10», E = 1-55 x 10"«, working fluid water. 
NoTthesl^deeding of the Lrmal layer and the increase of the interior temperature from 

r=o. 

Figure 2.3: Temperature sections from Hignett et al. (1981) with (a) for zero rotation and 
(b) for fast rotation. Thermal boundary layers can be seen in both figures. The thermal 
boundary layer is thicker in (b) as their theory predicted. 
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Hadley regime reappears (Holton, 1992). The kinetic energy of baroclinic eddies is derived 

from the available potential energy of the mean flow due to the meridional temperature 

gradient. The eddies rearrange the mean field toward a lower potential energy state so 

that the heat must be transferred poleward. Thus, a scaling law based on the eddies, a 

baroclinic eddy scaling law, could be obtained (Green, 1970; Stone, 1972). 

When the meridional slope of an isotherm is &rfc/Zy (subscript 'ft' for the baroclinic 

scaling law), the available potential energy (A.P.E.) 

A.P.E. ~ p0gaAT6Tb. 

Since A.P.E. is the source of eddy kinetic energy, we can define 

Vb
2=gaATSTb, 

where Vb is the velocity scale of eddies. The meridional heat flux due to baroclinic eddies is 

^T7 ~ CVbAT = C(gaSTbAT3)^2. 

Here, primed variables represent eddy related quantities. 

Since the release of A.P.E. may depend on rotation and stratification, C, the correlation 

coefficient between v' and T', may not be a constant. In Green (1970), the application 

was limited to the atmosphere and he treated C as a constant. Stone (1972), however, 

generalized the idea by assuming that over a long time the vertically averaged amplitude 

of the baroclinic eddies was equal to that of the baroclinic component of the mean zonal 

wind, and found through his calculation that 

where N2 = gaAT/6Tb. Thus, 

v'T< 
-     /(^^\^ 

v   n   ) 
Since (v'T')/ly « (w'T')/6Tb, the heat equation 

(v'T% + (w'T')z = KTZ 
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yields 

v'T 
^ 

We, then, can define a scale for the thermal boundary layer thickness &rb 

Meridional heat transport per unit width of a basin is 

y*   =   PoCpSrvT 

OC/MV!AT^V/7 (2-13) 

The above relation holds where mean flow is predominantly zonal. In the atmosphere and 

the Southern Oceans, the mean flows are zonal so the scaling law may be applicable. How- 

ever, in the Atlantic, Pacific or Indian Oceans, strong meridional currents, which are known 

to be important in meridional heat transport, are observed near the meridional boundaries. 

During the release of the available potential energy, the cold water in the northern half 

of the domain sinks and the warm water in the southern half rises. A symmetric merid- 

ional overturning circulation cell (Gill, 1982), which is not compatible with the asymmetric 

thermohaline circulation of the oceans, is developed. 

2.1.4    Geostrophic Scaling Law 

Assume that a meridional (north-south) temperature difference AT is applied to the surface 

of water in a rectangular basin. The water near the cold (northern) end becomes dense and 

sinks rapidly to the bottom. The water then flows toward the hot (southern) end while 

ascending toward the surface. At the surface, water flows from the hot end toward the cold 

end. Since the active descending motion (water mass formation) occurs over a small region 

near the cold end, if the water mass formation region is excluded, the flow pattern can 

be simplified as a two layer lock-exchange flow with vertical motion across the interface as 

shown in Fig. 2.4. 
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Figure 2.4: Schematic convective flow pattern driven by meridional temperature gradient 
at the surface of a rectangular basin, (a) a perspective view of meridional circulation, and 
(b) a zonal section. See the text for the detail. 
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In addition to the meridional overturning circulation, the vertical motion stretches the 

lower layer and generates cyclonic relative vorticity to conserve potential vorticity, and 

shrinks the upper layer and generates anticyclonic vorticity. In the western half, the vortical 

motion and the meridional overturning circulation are in the same direction in each layer 

so that strong flows occur. These strong flows happen in an /-plane so they are different 

from western boundary currents in a /3-plane. In the eastern half, the motion due to the 

relative vorticity and the meridional overturning circulation are in opposite directions. If 

the horizontal motion due to the relative vorticity is stronger than meridional overturning 

circulation, horizontal gyres become dominant in each layer. This schematic flow pattern is 

similar to those of Colin de Verdiere's (1988) and Winton's (1996) numerical experiments 

in /-plane oceans. 

A scaling law for such a meridional overturning circulation based on geostrophy and 

advective-diffusive heat balance, a geostrophic scaling law, can be found in many stud- 

ies (Bryan and Cox, 1967; Welander, 1971a and 1986; Bryan, 1987; Colin de Verdiere, 1988; 

Whitehead, 1991; Huang and Chou, 1994; Winton, 1996). Consider that meridional tem- 

perature gradient (Ty = AT/ly) is given along the surface of a rectangular basin, where 

ly is the length of the basin. In a numerical study by Huges and Weaver (1994), within 

the thermal boundary layer the North Atlantic overturning is almost linearly proportional 

to the meridional difference in the zonal average of depth-integrated steric height between 

the latitude of maximum zonally averaged surface density and the southern limit of the 

North Atlantic (1.75°iV). The results suggests that the zonal temperature gradient (Tx) 

that drives the meridional overturning circulation is linearly proportional to the meridional 

temperature gradient. 

If we assume Tx ~ Ty in the thermal boundary layer, thermal wind balance yields a 

meridional velocity scale Vg 

V. = *f**. (2.14) 
Jly 

The assumption Tx ~ Ty is equivalent to an assumption Vg ~ Ug, where Ug is a zonal 

velocity scale. The meridional movement of a fluid must be compensated by upwelling into 
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the thermal boundary layer so 

Wg EE -LIL. (2.15) 
ly 

If we further assume that the vertical advection of the cold water is balanced by the 

downward diffusion of heat from the surface within the base of the thermal boundary layer 

(Munk, 1966), i.e., 

we can obtain 

W9 = JL. (2.16) 

The horizontal advection of heat was not considered in the above relation but if we use 

continuity 

vTy « UgAT/ly fa WgAT/6Tg » vfTs. 

Thus, all the terms in the heat equation are equally important. 

Prom Eqs. 2.14, 2.15 and advdiff, one can get 

*r. =    ~5TF        , (2-17) l9 \gaATj      ' 

\2\1/3 

u.-(*$!-)   . (,18, 

Meridional mass transport per unit width Qg is then 

Qg = Ug6Tg = ( —**j J      . (2.19) 

The meridional heat flux per unit width Hg/lx is thus 

j*   =   p0CpATQ 

*   -_ P„cr(^)1'3 (220) 

Here, lx is the width of the basin. 

The geostrophic scaling law is discussed for convective circulation in an /-plane basin, 

but in numerical studies by Bryan and Cox (1967 and 1968), Bryan (1987), Colin de Verdiere 
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(1988), Huang and Chou (1994), and Winton (1996), the scaling law was applied to ther- 

mally driven circulations in /?-plane basins. Bryan and Cox (1967 and 1968) found that 

the meridional heat transport from model is about 0.3 of that from the geostrophic scaling 

law. In their studies, only a few points in the parameter space were considered so that their 

data are not enough to establish a definite relation. In Bryan (1987) and Colin de Verdiere 

(1988), the power dependences of properties related to meridional overturning circulation 

on K were studied. The thermocline thickness ST follows 

&r ~ K
1/3

, 

reasonably well as the geostrophic scaling law suggests. The meridional heat transports in 

Bryan (1987)'s experiment and Colin de Verdiere (1988)1 also follow the scaling law (Bryan, 

1991), so 

H ~ /c2/3. 

The meridional mass transport Q, however, shows different relations. In Bryan (1987), 

Q ~ K
1
/

3
. Later, Huang and Chou (1994) suggested that Bryan (1987)'s experiments did 

not reach equilibrium states, and in equilibria Q ~ K
1
/
2
. In Colin de Verdiere (1988), the 

kinetic energy ~ K
2
/

3
 and he concluded that the velocity scale follow the scaling law since 

U ~ K
1
/

3
 yields U2 ~ K

2
/

3
. It is not clear how the kinetic energy is defined, but if it is 

an average over a meridional section, the kinetic energy is proportional to U
2
ST- Since 

Q2 ~ U26T ~ K
2
/
3+1

/3) Q ^ Ki/2_ There is no clear explanation why Q does not follow the 

scaling law whereas ST and H do. 

Huang and Chou (1994) derived a scaling law for a convective circulation in a /?-plane 

driven by precipitation and evaporation (E — P) using thermal wind relation, advective- 

diffusive salt balance, continuity and the salt conservation. Their scaling law is physically 

the same as the geostrophic scaling law. If we consider H as a variable and write AT, ST 

and Q using H (as in Table 2.1) and and replace AT by AS and H/p0Cp by ly{E - P)S, 

^olin de Verdiere (1988) concluded that H ~ re1/2 in his experiment but H ~ K
2/3

 is also a statistically 
acceptable fit (Bryan, 1991 and see Fig. 4 of the paper). 
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we can get their scaling law. Here, AS is the meridional salinity contrast and S the mean 

salinity. Their scaling law was confirmed by their numerical experiments. 

2.1.5    Comparison of the Scaling Laws 

A brief summary of the three scaling laws discussed in the previous sections is shown in 

Table 2.1. If thermal forcing AT is known, meridional heat flux H, and thermal boundary 

layer thickness ST, can be represented using AT and other external parameters such as /, 

the physical properties of the test fluid, and the geometrical constants of the container. If 

H is known as in the present experiment (described in the next section), AT and ST can 

be represented using H and other external parameters of an experiment. 

The three scaling laws are compared in Fig. 2.5. In Fig. 2.5(a), which shows the depen- 

dence of AT on / for fixed H, the geostrophic scaling law shows lowest AT for the same 

heat flux; thus the geostrophic scaling law is the most effective in transporting heat. This 

is natural since the geostrophic scaling law allows geostrophic flow that carries heat from 

the source to the sink directly, while the other scaling laws do not. 

A thermal boundary layer thickness can be treated as an indicator of heat transfer effi- 

ciency, independent of meridional heat transfer mechanism. Heat loss to the system by deep 

water mass formation (heat input for an upside down ocean like the present experiment) 

H is the same as diffusive heat input (loss) through the surface (bottom) excluding the 

water mass formation region, which is H ~ KAT/ST; thus, ST ~ KAT/H. Here AT can 

be treated as buoyancy forcing and H meridional heat flux. When buoyancy forcing AT 

is fixed, a system with higher heat transfer efficiency gives higher H and subsequently a 

thinner thermal boundary layer. When H is fixed, AT and ST are the smallest in the most 

effective system. The geostrophic scaling law is the most effective in meridional heat trans- 

port, so it shows the smallest ST as shown in Fig. 2.5(b), which represents the dependence 

of ST on / for fixed H. Note that in the figure, AT and ST from the Ekman scaling law 

and the baroclinic eddy scaling law show similar magnitude and / dependence. It may not 

be easy to differentiate the two scaling laws in laboratory or numerical experiments where 
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Figure 2.5: Comparison of the scaling laws in Table 2.1 in (a) the dependence of AT, and 
(b) the dependence of ST on / when H = 50W. The dashed lines are for the geostrophic 
scaling law, the dotted lines are for Ekman scaling law, and the dash-dotted lines are for the 
baroclinic eddy scaling law. The solid lines are contours of r. The scaling laws are valid when 
r > O(l).  In the calculation lx = ly = 100cm, K = 1.4 x 10" ~3cm2s v — 10 2cm"s~ 
a = 2 x 10-4oC-\ g = 980cms~2, p0 = lgcm'6, and Cp = Alg^C'1. Note that the 
proportionality constant is assumed "1" for each case. A proper proportionality constant 
can be determined thorough laboratory experiments, numerical runs, or analytical solutions. 
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/ is systematically varied. 

2.1.6    Thermocline Theory 

Thermocline theories attempt to explain how surface forcing by heat and wind stress pene- 

trates to great depths in the oceanic gyres (Pedlosky, 1987). Depending on how the vertical 

velocity is determined, they can be divided into two kinds; wind driven thermocline theories 

and classical thermocline theory. In the former, Ekman pumping at the surface specifies 

vertical velocity and the motion is driven by wind stress. In the latter, vertical velocity 

is determined internally and the motion is primarily thermally driven. The review in this 

section is based on Pedlosky (1987) and Huang (1995). 

Classical Thermocline Theory 

The classical thermocline theory in a /?-plane ocean (Robinson and Stommel, 1959) is similar 

to the geostrophic scaling law. The linear vorticity equation in a /?-plane from geostrophy 

a        tdw 

yields 

RV      foW fjY —. 

If we assume Tx ~ Ty, the meridional velocity scale V satisfies thermal wind relation 

Eq. 2.14. If Eq. 2.16, the balance between vertical advection and diffusion in the heat 

equation, is used for W 

^J^L\'\wJi^L\ll\ (2.21) {ßgaATj 

As in the geostrophic scaling law, the horizontal advection of heat is as large as the 

vertical advection and the vertical diffusion. This, thus, is sometimes called the advective- 

diffusive thermocline theory. The vertical velocity compensates for the water mass formation 

in the polar region, and it is upward. In thermocline theories, the thermocline has not been 
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considered part of a convective circulation driven by differential heating. Meridional heat 

transport has not been estimated but it can be estimated easily as follows: 

H 
=   PoCpVSTAT 

X 

PoCp 
'gaK2lpATl\l/3 <2'22) 

n   ß   ) ■ 
If ß = fofiy is introduced into the above equations, Eq. 2.21 and 2.22 become the same as 

those from the geostrophic scaling law, Eq. 2.17 and 2.20, respectively. 

Robinson and Stommel (1959) derived a similarity solution of the linear vorticity equa- 

tion by neglecting the zonal advection of heat and assuming special boundary conditions. 

(The surface temperature is independent of longitude and the east coast temperature is 

the same as the deep temperature.) The scale depth in their solution is the same as ST in 

Eq. 2.21. The thermocline thickens to the west and shows a maximum in the subtropics as 

the oceanic thermocline does. To fit the scale to the oceanic value, however, a unrealistically 

large vertical heat diffusion coefficient (K RS 10cm2s_1) is required. 

When thermocline thickness (Eq. 2.21) and vertical velocity are estimated with canonical 

values from the oceans, which are AT = 20°C, K = 0.1cm2s~l ~ lcm2s_1, f0 = 10~4s_1, 

I = 6 x 108cm, g = 103cms-2 and a = 2 x 10-4 °C~1, ST is in the range of 100 to 200m 

and W is in the range of 1 x 10-5 to 5 x 10~5cms-1. These estimated values are smaller 

than those of the oceans, where the observed thermocline thickness is about 1000m, and 

the Ekman pumping at the surface WE is about 10-4 cm/sec. Note that the estimations 

are based on a simple scaling argument that lacks proportionality constants. 

The vertical velocity from the classical thermocline theory is internally generated by the 

thermal forcing and independent of the Ekman pumping. If the Ekman pumping is specified 

at the surface, two quantities (V and 6T) have to be determined using three independent 

equations (thermal wind relation, the linear vorticity equation and the heat equation); the 

problem becomes overspecified. Furthermore, to obtain a boundary layer type solution with 

Eq. 2.16, w > 0. In the subtropical oceans, WE < 0 so a proper solution cannot be obtained. 

In the subpolar oceans, WE > 0 SO that it is possible to include WE by modifying w in the 
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deep ocean as in Robinson and Stommel (1959). The deep vertical velocity is believed to 

be determined by the water mass formation in the polar oceans. It is very unlikely that the 

deep velocity is determined by WE at the surface. Thus, the classical thermocline theory is 

not compatible with the Ekman pumping. 

Although the classical thermocline theory incorporates the meridional overturning cir- 

culation, it is not sufficient for the theory of the oceanic thermocline. The same problem is 

expected with the geostrophic scaling law when we try to apply that to the oceans. The clas- 

sical thermocline theory is believed to be valid in the deep part of the oceanic thermocline 

below the wind driven thermocline (Welander, 1971a) 

Wind Driven Thermocline 

In the wind driven thermocline theory, vertical velocity is induced externally by Ekman 

pumping at the surface. Prom the thermal wind relation, the linear vorticity equation and 

W = WE from the Ekman pumping, we can get a new scaling for thermocline 

If we estimate thermocline thickness with the above relation when WE = 10~4 cms-1, we 

find 8a sa 300m, and the estimation is better than that from the classical thermocline theory 

for the oceans. 

If we compare the strength of vertical diffusion to advection with Sa 

^% ~ 77^-r « 0.03 to 0.3, (2.24) 
wTz      WESa ' ^       ; 

when K is in the assumed range. The vertical diffusion can be neglected so that the density 

balance becomes advective, i.e., 

u-VT = 0. 

Hence, this is called the "advective" or "ideal fluid thermocline theory". 

When flow enters the geostrophic region from the Ekman layer, temperature must be 

specified at the inflow region to determine the solution of the density equation.  Thus, in 
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the subtropical gyres where WE < 0, a purely ideal thermocline that satisfies arbitrary 

surface temperature distribution can exist. In the subpolar gyres where WE > 0, flow 

leaves the geostrophic region to the Ekman layer carrying fluids whose temperature has 

been determined within the gyre. The temperature of the exiting fluid cannot be expected 

to match the arbitrary surface density. 

When WE < 0, we can get a diffusive length scale from Eq. 2.16 

SD~WE- 

Since Eq. 2.16 cannot have a boundary layer type solution when WE < 0, Sp cannot be 

applicable to the subtropical gyres. The ratio of 8D to Sa is the same as the ratio of the 

vertical diffusion to the vertical advection (Eq. 2.24), which is small. The diffusive layer is 

so thin that no thermal wind can develop. This thin diffusive layer, where density signal 

decays away from the surface, intervenes between the deeper advective layer and the Ekman 

layer, and removes the mismatch between the surface boundary condition and the advective 

thermocline (Welander, 1971a; Pedlosky, 1987). 

Huang (1988), however, showed all water parcels in subpolar basin come from the west- 

ern boundary so the upper surface is the downstream boundary. Therefore, the density at 

the sea surface cannot be prescribed but should be calculated as a part of the solution. 

By introducing the western boundary and specifying a potential vorticity distribution, he 

obtained a solution for the ideal fluid thermocline in a subpolar gyre. The surface density 

distribution was calculated as a part of solution. 

In many studies, the thermocline problem has been studied by assuming similarity 

solutions. Welander (1959) found a similarity solution (M-equation, integrated density 

function) of the ideal fluid thermocline for given surface density distribution by assuming 

that the deep ocean is motionless, the vertical structure depends on (sin0)~l, and the 

horizontal structure on sin9((p + E{6)). Here, 6 means latitude, ip longitude, and E(cp) is 

an arbitrary function that can be determined by boundary conditions. The vertical scale 

of the solution is CsinO. The constant C was considered the same as ST from the thermal 
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wind relation by considering that U and AT are given so C ~ Ufly/gaAT. If the Sverdrup 

relation is used to relate WE to U, C becomes the same as Sa (Eq. 2.23). 

The thermocline shrinks in tropical regions as sinO ->■ 0, and deepens mid-latitude sub- 

tropics, as in the oceans. The solution can satisfy no flux condition across the eastern 

boundary. The solution, however, requires a special surface condition for the Ekman pump- 

ing velocity and density distribution. In his later paper (Welander, 1971a), the vertical 

diffusion of the heat was included into his M-equation. The diffusion produces a deep up- 

welling independent of depth. There is no interaction between the diffusion and advection 

so that the structure of the solution is not changed from that of the ideal fluid thermocline 

(Pedlosky, 1987). 

Welander (1971b) assumed that the potential vorticity of an exponential similarity so- 

lution is a linear function of density and the Bernoulli function B, i.e., fpz = 2Q(ap + bB), 

where B = p + pgz, and a = a(0,4>) and b = b(6, <j>) are determined through boundary 

conditions. The equation can satisfy an arbitrary surface density field but cannot satisfy no 

the flow condition along the eastern wall. He required that p goes to a constant for large 

z so the solution cannot satisfy the Ekman pumping at the surface. The thermocline rises 

toward the equator, and the depth of it varies as (sin6)ll2 rather than as sind as it does in 

Welander (1971a). 

By making an appropriate choice of the potential vorticity and specifying surface pres- 

sure on the boundaries where fluids move into (or out of) the domain, Huang (1984)'s ideal 

fluid thermocline solution could satisfy arbitrary surface density and Ekman pumping dis- 

tributions. Pedlosky (1987) proposed that the theory is expected to apply to a finite depth 

interval at the surface, and the isopycnal surface bounding that region would become an 

unknown of the problem. The solution satisfies an arbitrary Ekman pumping at the surface, 

instead of the constant density condition in the deep ocean. 

In Needier (1967), by assuming that the vertical structure of an exponential solution 

of pressure (p-equation) is C/sinQ, a similarity solution that satisfies an arbitrary surface 

density distribution was found.   Here, C is a constant that can be determined from the 
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distributions of the density and Ekman pumping at the surface, and the constant requires 

a special relation between the Ekman pumping and the surface density distribution. 

No flux boundary condition across the eastern boundary requires that the surface density 

is the same as abyssal density on the boundary, so the thermocline thickens to the west. 

The dependence of the scale depth on sinO yields mid-latitude maximum of thermocline 

thickness as in Welander (1959). Therefore, a realistic temperature structure could be 

obtained if a special choice in the surface density distribution and Ekman pumping velocity 

is made (Pedlosky, 1987). In his derivation, the vertical diffusion of heat was included but 

the only role of diffusion is to produce abyssal upwelling without altering the advective 

structure as in Welander (1971a). In similarity solutions the vertical structures of the 

solutions were assumed a priori and require special relations between boundary conditions. 

However, there is no reason that the assumed vertical structures of the solutions are relevant 

and valid throughout the domain of the flow. 

Luyten et al. (1983) introduced a layered thermocline model (the ventilated thermocline 

theory), which does not need a similarity form and satisfies surface temperature distribution 

directly for the interior of the subtropical gyres excluding the western boundary region and 

the Ekman layer. The upper ocean, which satisfies the Sverdrup balance, is divided into 

several constant density layers that outcrop at different locations. Each layer satisfies the 

continuity, geostrophy, and linear vorticity equation. The top layer at any location is 

directly influenced by the Ekman pumping. The deepest layer is not influenced by the 

Ekman pumping at all and motionless. 

Once a fluid parcel is subducted below the top layer by the surface Ekman pumping, the 

parcel flows southward following a trajectory determined by the conservation of potential 

vorticity, which is given at the outcropping location, and the Sverdrup relation. The water 

subducted at the eastern boundary has to leave the wall in order to conserve the potential 

vorticity. Thus, below the top layer there is a region called the shadow zone, which cannot 

be refreshed by fluid flowing from the outcrop line. Near the western boundary, there is 

water coming out from the western boundary region whose potential vorticity cannot be 
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determined by the interior model. This is called the pool zone. Even with two active 

layers, the ventilated thermocline theory shows a non-self similar solution that consists of 

three zones of different dynamics; the ventilated zone, the shadow zone and the pool zone. 

The ventilated thermocline theory, however, cannot explain the effect of the vertical heat 

diffusion on the thermocline. 

If we estimate meridional heat transport with the scales from the wind driven thermo- 

cline theory 

H = p0CpVSaATlx « 3 x 1015W, 

when WE = 10-4cms-1, AT = 20°C, and lx = ly = 6 x 108cm. The value is comparable 

to the estimation using hydrographic data in the North Atlantic across 25°iV 1.22 x 1015W 

(Bryden and Hall, 1980; Hall and Bryden, 1982). In the wind driven thermocline theory, 

convective processes such as water mass formation and deep upwelling cannot be included 

properly so that one could question the validity of the estimation using the wind driven 

thermocline theory. 

In Bryan and Cox (1967)'s numerical experiment with thermal forcing only, a single 

large anti-cyclonic gyre exists above the thermocline and a sluggish cyclonic gyre below 

the thermocline. The meridional heat transport was about 0.3 of the prediction with the 

geostrophic scaling law. When surface wind stress, which can produce horizontal velocity 

scale about three times larger than that due to the thermal forcing, was introduced, the 

horizontal circulation became stronger, and a cyclonic gyre was formed in subarctic latitude. 

The meridional heat transport and the strength of the meridional circulation, however, did 

not change much. The wind stress had no apparent effect on meridional overturning circu- 

lation. The wind driven gyre was faster than the thermally driven one, but a large part of 

the former was simply recirculation and did not contribute to the meridional overturning 

circulation much. It is not hard to expect that the wind driven thermocline theory can- 

not represent meridional heat transport process properly, although the prediction of the 

thermocline thickness from the theory is comparable to the observed values. 
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2.1.7    Laboratory Experiments 

A laboratory experiment is useful for the study of a scaling law since it does not require a 

priori assumptions or parameterizations for dynamics. It is also easier to change parameters 

of interest and isolate a certain phenomenon. However, due to the difficulty of heat flux 

measurement, most laboratory experiments on rotating convection driven by differential 

heating have never been used to obtain or test scaling laws related to meridional heat flux 

except those of Condie and Griffiths (1989). 

They heated a vertical wall and cooled the opposing side walls of a rotating cavity. By 

measuring temperature changes across the side walls, which were consisted with copper and 

aluminum, they could estimate the heat transport of the experiment. The Nusselt number 

Nu, the ratio of the heat transport by convection to conduction, was mainly determined 

by the Rayleigh number (Nu ~ ita1/4) and weakly depended on rotation; when / was 

increased about 4 times, Nu was decreased by 7%. In the oceans, buoyancy is applied 

along the sea surface. In their experiment, the buoyancy forcing was applied through the 

side walls. A horizontal thermal boundary layer, which is equivalent to the thermocline of 

the oceans, was not observed as shown in Fig. 2.6 (from Condie, 1989). There might have 

been a vertical thermal boundary layer near the cold wall, but it was not possible to confirm 

such a layer with the results presented in their paper. An interior of uniform temperature 

was not observed, either. The temperature fields of the experiment was quite different from 

those of the oceans so that the flows and the heat transport processes of the experiment 

might be different from those of the oceans. 

Speer and Whitehead (1988) differentially heated the copper bottom of a square tank. 

A horizontal thermal boundary layer and an interior with a weak temperature gradient 

were observed as shown in Fig. 2.7. Rising motion was confined to a narrow region near 

the hottest end of the bottom. A cyclonic gyre was observed in the interior that had 

relatively uniform temperature shows that the flow field was not two dimensional as in 

the analysis with an annulus. Thus, the scaling laws with a rotating annulus (the Ekman 

scaling law) may not be applicable to a rotating rectangular container.   The study was 
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Figure 2.6: Zonal temperature sections in Condie (1989) (Fig. 1(d) in the paper) where x/L 
is the distance from the hot end (x/L = 0). The isotherms are drawn at equal intervals. 
No horizontal thermal boundary layer can be seen. There are fast meridional boundary 
currents where <g> means warm current from the warm wall to the cold wall, and 0 means 
cold current from the cold wall to the warm wall. 
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Fig. 5.   Vertical sections of temperature from the hot to the cold end, located 10 cm from the 
left and right walls (looking from the hot end to the cold end). 

Figure 2.7: Temperature sections from Speer and Whitehead (1988) (Fig. 5 in the paper). 
A thermal boundary layer and an interior of nearly uniform temperature can be seen. From 
the two figures a zonal temperature gradient, which supports a meridional geostrophic flow, 
can be deduced. 
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primarily intended for oceanic application but the results were qualitative and descriptive. 

The functional dependence of the structure of the flow and temperature field on external 

parameters was not found. Heat flux measurements were not made either. 

Most of the theoretical or experimental studies described above on rotating convection 

were done with two dimensional flow fields and may not be applicable to the oceans. Studies 

with three dimensional flow fields were exploratory and were not pursued in enough detail 

to test any of the theories reviewed above. Numerical experiments that try to simulate the 

present oceans and climates would benefit from additional understanding of the dynamics 

and scaling laws of oceanic convective circulation. 
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2.2    Experiment 

2.2.1    The Design 

The main purpose of the experiment is to study buoyancy driven circulation in a laboratory 

as a model of oceanic thermohaline circulation. The primary goals were to obtain scaling 

laws for the meridional heat transport and for the thermal boundary layer, and to identify 

the flows related to the meridional heat transport. The first priority was given to simulate 

the effect of the meridional boundaries of the oceans, which make the large scale ocean 

circulations different from the atmospheric ones. To accomplish this a 100cm x 100cm x 20cm 

square tank was used as sketched in Fig. 2.8. 

The second priority was to get a thermal boundary layer that is equivalent to the ther- 

mocline of the oceans. To accomplish this buoyancy forcing was applied along a horizontal 

boundary. In the oceans, the buoyancy forcing is applied along the surface of the oceans. In 

the experiment, differential heating was applied along the bottom for technical convenience. 

Thus, the experiment was equivalent to an upside-down /-plane ocean. The meridional di- 

rection of the experiment (y) is in the direction of the applied temperature gradient. The 

zonal direction of the experiment (x) is then the direction perpendicular to the meridional 

direction. 

The third priority was to optimize the precision of the heat flux estimation. In previous 

laboratory experiments, differential heating was implemented by specifying temperature 

distribution along or across boundaries. Since it is difficult to measure temperature profiles 

right next to boundaries, heat exchange through the boundaries of the system could not 

be estimated easily. In this experiment, heat flux was fixed along the bottom using an 

electrical heater and a cooling plate along the bottom of the tank while insulating all other 

boundaries. 

An electrical heater of 100cm x 20.3cm, connected to a constant voltage source, was 

placed at one end of the bottom of the tank. The cooling plate was a copper plate of 

100cm x 20.3cm and was located at the other end. The plate was cooled by running water 
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Figure 2.8: The design of the experiment, (a) a top view (b) a side view along a meridional 
section. The tank is 100cm x 100cm x 20cm. Buoyancy forcing was applied using an 
electrical heater and a cooling plate along the bottom of the tank. The configuration is 
equivalent to an upside-down /-plane ocean with constant heat flux at the bottom. 
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from a constant temperature water bath through copper tubing that was soldered below 

the plate. A 1.3cm thick Plexiglas plate of 100cm x 59cm was placed between the heating 

pad and the cooling plate to prevent any heat exchange. The four walls of the tank were 

made of 1.3cm thick Plexiglas to retard heat transfer. The outside of the tank was insulated 

further with 5cm thick Styrofoam. 

If this system was left alone long enough to reach an equilibrium state, and if all the 

boundaries except the heating pad and the cooling plate were insulated perfectly, the same 

amount of heat applied by the heater H would be removed by the cooling plate. The 

meridional heat flux, thus, would be H within in the experimental error that was mostly 

due to imperfect insulation. (The detail description of the error is in the next section.) 

Special tests, which will be subsequently described, showed that the experiment reached 

the equilibrium state. It follows that the meridional heat flux was used as a known external 

(control) parameter. 

The basic non-dimensional parameters of the experiment were 

gaATll 
Rayleigh Number Ra = - 

UK 

v 
Ekman Number E = —~ 

Thermal Rossby Number RT = 
gaATd (_ Vg 

Ply    V    fh, 

Prandtl Number Pr = 

y 
v 
K 

d 
Aspect Ratio e = — 

ly 
Horizontal Aspect Ratio £/, 

Here, g is gravitational acceleration, AT is a meridional temperature difference across the 

tank, a is the thermal expansion coefficient, K is the thermal diffusivity, v is the kinematic 

viscosity of water, and / is the Coriolis parameter, d is the depth and ly is the length and 

lx is the width of the tank. Since a square tank was used, the width is the same as the 

length and e^ = 1. Water was used as a test fluid so Pr ss 7 throughout the experiments. 

The water depth was 12cm throughout the experiment so e = 0.12. 
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The thermal Rossby number is the same as the Rossby number if velocity estimation 

from the thermal wind relation Vg = gaATd/fly is considered. In most cases, RT «0.1 

so that the non-linear effects were small compared to the Coriolis effect. Since heat flux H 

was fixed, AT was not an external parameter, but a value to be determined through the 

experiments. The heat loss through the cooling plate, p0CpKTz, was the same as the heat 

input by the heating pad, H, so AT = Hd/Kp0Cp. This relation was used to get a rough 

idea of the parameters during the early stages of the experiments. After obtaining AT from 

the experiments, the above definitions of Ra and RT were used. 

The main parameters of interest in this experiment were Ra and E. The variation in Ra 

was obtained by changing boundary heat flux H, which varied from 20watts to AOOwatts. 

The upper limit of Ra was set by the endurance of the tank against heat. If H > AOOwatts 

the water became hotter than 50° C and the Plexiglas tank would deform. The maximum 

value of Ra was about 3 x 1011, and Ra was varied by about 20. In the experiment, Ra 

is several orders of magnitude larger than those obtained by any numerical experiment or 

previous laboratory experiments, but it is still much smaller than those of the oceans. In 

the oceans, Ra « 8.6 x 1026 when AT « 20°C, d = 5000m, ly = 6 x 106m, K = 10-4m2s-1, 

and v = 10-4m2s-1. 

The variation of E was obtained by changing /, which was varied from 0.25s-1 to 

1.25s-1. A few runs were done with 0 < / < 0.25s-1 for comparison. The lower limit in E 

(the upper limit of /) was determined in such a way that the surface elevation change due 

to the centrifugal force was less than 5% of the still water depth. The typical value of E 

was around 10-4 and E was varied by about 12. 

There are two other parameters that are related to Ra and E, and more clearly indicate 

the importance of the rotation or balance in a thermal boundary layer (Hignett et al., 

1981). One is a thermal boundary layer thickness related to the strength of buoyancy 

forcing. For this, one can use the thermal boundary layer thickness of a non-rotating 

system 6rn = lyRa~1/5 (Rossby, 1965), where the subscript 'n' means a non-rotating system. 

The other, which represents the strength of rotation, is the Ekman layer thickness in a 
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homogeneous fluid SE = dEll2. The square of the ratio between the two depth scales 

r = (*LL\
2
 „ AT-2/5/ 

represents the importance of rotation in convection (Hignett et al, 1981). 

When r > 0(1) (Fig. 2.9(a)), a thermal boundary layer is far thicker than the Ekman 

layer; rotation is important within the thermal boundary layer (geostrophic balance within 

a thermal boundary layer). When r < 0(1), the Ekman layer is thicker than a thermal 

boundary layer (Fig. 2.9(b)); frictional dissipation is important within a thermal boundary 

layer. In the oceans, the Ekman layer is O(100m) deep (using an empirical turbulent viscos- 

ity), but the thermocline is about 1000m. The thermal boundary layer of the experiment 

should be thicker than the Ekman layer so that geostrophy is maintained within the thermal 

boundary layer. Both Ra and E were varied independently to get r > 0(1) and most of 

the runs were done with this range. 

2.2.2    Procedure 

Spin Up The tank was placed on the 2m diameter rotating table in the GFD laboratory, 

Coastal Research Center, WHOI, and filled with water to 12cm deep. The table, the heating 

pad, and the cooling plate were then turned on. The spin up time for a homogeneous water 

is 0((vf)~°-5d), which was less than an hour in this experiment. The time required to raise 

the temperature of a water of volume V by AT°C using a heater oiHwatts is p0CpAT V/H. 

Some trial runs showed that AT/H « 0.1°C/watts, and V « 105cm3. The heat up time 

was about 15hours. At the same time, there was heat loss through the cooling plate, so it 

took more time to reach a thermal equilibrium state. After some trial runs, it was possible 

to know how long it would take to attain equilibrium temperature and what the equilibrium 

temperature would be. The tank was filled with water a few degrees lower than the expected 

equilibrium temperature in order to reach an equilibrium state faster. The water was spun 

up at least 40 hours before temperature sections were made. 

To satisfy the flux boundary condition, a run should reach an equilibrium state.   It 

was important to have a clear criterion on a thermal equilibrium state.  During the spin 
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Figure 2.9: A diagram for the Ekman layer and a thermal boundary layer when (a) r > 0(1) 
and (b) r < 0(1). In (a) rotational effect is dominant within the thermal boundary layer. 
In (b), frictional effect is dominant within the thermal boundary layer. 
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up, two thermistors were placed on the bottom at (x,y) = (50cm, 2cm) and (50cm, 98cm). 

In Fig. 2.10(a) and (c), which are typical temperature measurements during the spin up, 

the temperature changes rapidly right after the beginning of the run, but the change be- 

comes smaller with time. After about 35 hours of spin up, there is no mean trend in the 

temperature curve. This suggests that the temperature field reached an equilibrium state. 

Fig. 2.10(b), which is a blow up of the equilibrium state in Fig. 2.10(a), shows some spikes. 

Considering the active convective motions over the heating pad, those spikes are natural. 

Fig. 2.10(d), which is a blow up of the equilibrium state in Fig. 2.10(c), shows constant 

readings relative to those over the heating region. Right over the cooling plate, heat leaves 

the water by diffusion and motion should be weak, so the temperature should be rather 

constant. The flat readings also suggest that the drift of the thermistors over time was 

negligible. 

Measurement Temperature sections were made after the hourly average of the readings 

with the two thermistors changed less than 0.1°C. The temperature was measured with 

thermistors of ±0.1°C accuracy at 7 to 13 levels with at least 15 locations on each level 

at each section. Near the bottom about 100 readings and in the interior 50 readings were 

made at each location and then averaged to remove the variation due to thermals and waves. 

The thermistors were connected to a data logger, which was in turn linked to a portable 

computer. The readings, which were the resistance of the thermistors, were stored in the 

computer and converted to temperature later. 

The thermistor array, which was mounted to a rack, was lowered to the bottom of the 

tank through a narrow slot in the 5cm thick Styrofoam cover, which was opened during the 

measurement. The slot was about 1mm wide in most cases so that the heat loss through 

it was not significantly larger than that due to the imperfect insulation of the tank. After 

leaving them in that location for a few minutes so that they equilibrated to the ambient 

water temperature, readings were made. The array was then lifted by a fixed distance using 

a stepper motor, and then temperature was again measured. This procedure was continued 
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Figure 2.10: Temperature change during spin up when H=100W, / = 1.25s-1 (Ra = 
9.3 x 1011, E = 5.6 x 10-5) (a) over the heating pad, (b) blow up of (a) when an equilibrium 
state was reached, (c) over the cooling plate and (d) blow up of (c) when an equilibrium 
was reached. The measurements were made every 20sec. 

50 



until the thermistors reached near the surface of the water. Three meridional sections were 

made for each parameter in most cases; 10cm away from the left and right meridional 

boundaries and one at the center (x = 10cm, 50cm, 90cm). Zonal sections were made for 

selected parameters at selected locations to identify heat carrying flows, and to infer flow 

patterns. It took about two to three hours to complete a section. To remove disturbances 

that might have occurred during the measurement, the experiment was left at least four 

hours before making another section. Including the spin-up time, a run took about three 

to four days. 

Flow visualization was done using the thymol blue technique. A stack of two grids was 

used as electrodes. Each grid consisted of one or more meridional, and three or more zonal 

wires of 0.16mm diameter stainless steel rod. One grid was placed 1cm above the bottom 

so it was within the thermal boundary layer but above the Ekman layer. The other one 

was placed 7cm above the bottom to be in an interior of homogeneous temperature. 

Correction, Error Estimation and Instrument Calibration The largest source of 

error was heat loss through the boundaries of the tank owing to imperfect insulation. The 

actual heat loss was estimated as follows. The tank was filled with hot water and left alone. 

Since no heating or cooling was applied, temperature change was solely due to the imperfect 

insulation. By measuring the change in water temperature for a certain period of time, we 

could estimate the heat loss. During the measurement, the water was mixed to make the 

water homogeneous. The ratio of the heat loss to the temperature difference between the 

water and the laboratory was about 3watts°C~1. 

The conductive heat loss through the Styrofoam insulation could also be estimated using 

the heat conduction coefficient of Styrofoam psCpsKs = 3 x 10~4 Jem-1 s_1 °C~~l as follows: 

{psCpsKs/^cm) x surface area of the tank = 1.2watts°C~1. (2.25) 

To allow access to the water, the cover of the tank was placed over the walls of the tank. 

Thus, the contact between the cover and the walls was not air-tight so warm air could escape 
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from the tank to the laboratory in addition to the evaporation through the thermistor 

insertion slots. The remaining l.8watts°C~1 must be from heat loss due to evaporation. 

The heat loss was always from the water to the environment so that the upper bound 

of the meridional heat transport Hu 

■"{/ = ■"heating pad- 

The lower bound of the meridional heat tranport HL 

HL = Hheatingpad ~ (Twater ~ Tiab)3.0watts°C     . 

The mean of Hu and HL can considered as the actual (corrected) meridional heat transport 

H of the experiment. Thus, 

H = Hheatingpad - {Twater ~ Tlab)1.5watts°C~  . (2.26) 

Here, 2]a& is the temperature of the laboratory, which was set to 20°C ± 1°C using a 

laboratory-wide temperature and humidity controller. Thus, 2]a& can considered the same 

as the temperature of the cold water bath TB = 20° C. It was assumed that the water 

in the tank was homogeneous and the temperature was Twater- If the thermal boundary 

layer of the experiment is excluded, water temperature shows very little spatial change, so 

TWater could be considered as the highest temperature measured through a run. The typical 

uncertainty in H due to Hu and HL is about 20%. Hereafter, H or meridional heat flux 

means the corrected value using Eq. 2.26 and H^ or nominal heat flux means Hheating pad- 

All the thermistors were calibrated using a constant temperature water bath. Readings 

were made at four different temperatures and correction coefficients were obtained for each 

thermistors. The error due to the thermistors, ±0.1°C, was small compared to the one 

caused by imperfect insulation, and therefore was considered negligible. The thermistor 

array was moved vertically by a stepper motor so the uncertainty in vertical position was far 

less than 1mm. Horizontal position was, however, determined manually so the uncertainty 

in horizontal position was ±5mm or less. 
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Parameters of the Experiment Various parameters of the experiments are listed in 

Table 2.2. In the table H is estimated using Eq. 2.26. Although the nominal heat flux H^ 

is fixed, as the rotation becomes faster, AT increases; the heat loss due to the imperfect 

insulation becomes larger so that H decreases slightly. 

In Fig. 2.11, the runs are plotted in (E,Ra) space. The dashed lines in the figure 

represent contours of r = {ö^/SE)
2
, which represents the dynamic balance in a thermal 

boundary layer. In the direction of the upper right corner, the Ekman layer becomes 

thicker and r decreases so a frictionally balanced thermal boundary layer was obtained. In 

the direction of the lower left corner, r increases and the Ekman layer gets thinner so we 

could get a geostrophically balanced thermal boundary layer, which is suitable for oceanic 

application. Smaller H and greater / gave higher r, which was felt to be desirable, so in 

most runs r > 10. The runs with r < 10 were for comparison. 
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Table 2.2: Parameters of the experiments. Prom the experimental results, AT (see Section 
2.3.1) and ST (see Section 2.3.2) are obtained. 

/ (sec"1) HN (watts) H (watts) AT (°C) 5T (cm) 
0.25 20 15 3.6 3.2 
0.63 20 14 3.8 3.5 
1.25 20 14 4.2 4.5 
0.00 50 43 4.7 1.4 
0.25 50 40 6.4 2.2 
0.32 50 40 6.4 2.7 
0.45 50 40 6.6 2.7 
0.63 50 40 7.0 3.3 
1.00 50 39 7.3 3.4 
1.25 50 39 7.5 3.5 
0.25 100 86 9.7 1.7 
0.32 100 84 10.8 2.0 
0.45 100 83 11.5 2.3 
0.63 100 82 11.8 2.4 
1.00 100 81 12.4 2.6 
1.25 100 81 13.0 2.8 
0.00 200 178 14.5 - 

0.06 200 178 14.8 - 

0.08 200 178 14.9 - 

0.13 200 176 15.8 - 

0.18 200 176 15.9 - 

0.25 200 177 15.5 1.3 
0.32 200 175 16.6 1.1 
0.54 200 174 17.4 1.6 
0.63 200 173 18.2 1.6 
1.00 200 171 18.9 2.5 
1.25 200 170 19.8 2.5 
0.25 300 271 19.5 - 

0.63 300 268 21.6 - 

1.25 300 266 22.7 - 

0.25 400 361 26.2 - 
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Figure 2.11: Experimental parameters in (Ra, E) space. The dashed lines are the contours 
of r. Here, <g> is for HN = 20W, + is for HN = 50W, * is for HN = 100W, o is for 
HN = 200W, x is for HN = 300VT, and © is for HN = 400W. 
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2.3    Results 

2.3.1    Meridional Temperature Sections 

The meridional temperature distribution is qualitatively similar to that of Rossby (1965), 

as shown by a comparison between Fig. 2.12, which has typical meridional temperature 

sections, and Fig. 2.1. A thin thermal boundary layer extended from the cold end toward 

the hot end along the bottom of the tank. A rising region, where stratification was zero, 

or close to zero, was confined to a small region near the hot end. The interior temperature 

was uniform and close to that of the rising region. 

From the meridional temperature sections, AT, the temperature difference between the 

heating pad and the cooling plate, Tg, was estimated. Sometimes the hottest temperature 

was measured not at the bottom but in the interior. Temperature was measured at discrete 

locations so it was possible to miss the hottest point. The temperature difference between 

the hottest water observed in the interior and the water near the heating pad was small, 

however. Since there was no other source of the heat than the heating pad, the highest 

temperature measured, irrespective of the location, was considered the temperature of the 

heating pad. The heat conductivity of the cooling plate, which was 0.32mm thick copper 

plate, was high so that the estimated temperature change across the plate was less than the 

accuracy of a thermistor 0.1° C. The temperature of the cold water bath was effectively the 

same as T# so 

AT = Tmax — TB- 

In the thermal boundary layer with thickness of about 2cm, temperature changed very 

rapidly so that it was not possible to resolve it with 2mm diameter thermistors, especially 

right near the bottom. The thermistor readings were a weighted average of temperature 

over 2mm, so the readings within a thermal boundary layer must have been higher than the 

actual temperature. It, however, turned out that the measurements were adequate for the 

estimation of a thermal boundary layer thickness as shown in Section 2.3.3. In the rising 

region or in the interior away from the thermal boundary layer, the temperature gradient 
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Figure 2.12: Meridional temperature sections at x = 50cm with (a)/ = 0.63s * and HN = 
50W (Ra = 5.0xlO11, E = l.lxlO"4), (b) / = Is"1 andHN = 50W {Ra = 5.2xlO11, E = 
6.9 x 10-5), and (c) / = Is'1 and HN = 200W (Ra = 1.4 x 1012, E = 6.9 x lO""5). 
The meridional wall to the left when looking toward the cold end was at x = 0cm and 
is equivalent to the eastern boundary of the oceans. The dots indicate the location of 
temperature measurements. The heating plate was 0cm < y < 20.3cm and the cooling 
plate was 79.7cm <y< 100cm. 
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was small, so there was no difficulty of using the thermistors. 

When Figs. 2.12(a) and(b) are compared, the interior temperature increases as / in- 

creases, although HN is fixed. As / increases, vertical motion becomes more difficult and 

convective circulation becomes weaker. The water over the heating pad was exposed to the 

heat from the heating pad more before it filled the interior so that the interior temperature 

became higher. A run with higher H^ shows obviously higher interior temperature as the 

comparison between Fig. 2.12(b) and (c) shows. 

2.3.2    Vertical Profile 

Normalized vertical temperature profiles at (x,y) = (49.5,96)cm are shown in Fig. 2.13. 

Considering the size of the thermistors, the position of the center of the probes was con- 

sidered the depth of the measurement. A solid line is the least square fit of a temperature 

profile to an exponential function, 1 — e~hlai, where h is height, and a\ is a constant which 

minimizes the residual between the fit and the data. The constant a\ for each case is com- 

parable to the scale of the thermal boundary layer thickness, which is described in Section 

2.3.4. The overestimation of temperature due to the large vertical temperature gradient near 

the bottom can be seen clearly; at h = 1.5mm, the measurement is significantly higher than 

the fit. When the vertical temperature gradient is small, one can get a better temperature 

profile so that the fit becomes better as h increases. 

The results discussed in Section 2.3.4 suggest that the advective-diffusive heat balance 

was satisfied in the experiment. The advective-diffusive heat balance and the exponential 

temperature profile suggest that the vertical velocity profile also satisfies the same expo- 

nential form as in the classical thermocline theory by Robinson and Stommel (1959). The 

exponential form, furthermore, can satisfy no flow condition at the bottom. The vertical 

velocity profile of the experiment could be obtained, however. 

Runs with higher HN and lower / showed thinner thermal boundary layers. Higher heat 

input to the fluid causes a faster vertical overturning cell as a response to the increased 

buoyancy. A faster overturning cell brings more heat to a thermal boundary layer through 
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Figure 2.13: Normalized temperature profiles at (x,y) = (49.5,96)cm for selected parame- 
ters, (b) is blow up of (a). A solid curve is the least square fit of a profile to an exponential 
function. 
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vertical advection. Consequently, the diffusive heat loss through the thermal boundary 

layer should be intensified so that the thermal boundary layer becomes thinner. If we 

use a scaling argument, the heat equation (wTz « kTzz) gives ST ~ KW~
1
. A faster 

overturning cell, which occurs when / is smaller, pushes a thermal boundary layer toward the 

bottom and gives a thinner thermal boundary layer. This argument is consistent with the 

relation between the heat transport efficiency and the thermal boundary layer thickness (in 

Section 2.1.5); when convective overturning becomes faster, the meridional heat transport 

becomes greater and the thermal boundary layer becomes thicker. In the experiment, for 

fixed Hff, as / became faster, AT became higher. The meridional heat transport processes 

became less efficient so that the thermal boundary layer became thicker (Fig. 2.13). 

2.3.3    Scaling Law 

Meridional Heat Transport 

In Fig. 2.14, / versus AT for HN = SOW is shown along with the three scaling laws 

discussed earlier. To see the power dependence, a log-log plot was used. An appropriate 

0(1) proportionality constant was applied to each case to make the comparison easier. The 

proportionality constants are about 3 for the geostrophic scaling law, 1.1 for the Ekman 

scaling law, and 1.3 for the baroclinic eddy scaling law. 

The comparison can be made in an (H, AT) phase space, instead, to study the power 

dependence of AT on H. As can be seen in Table 2.1, the power dependence with the 

geostrophic scaling law is 3/4, with the Ekman scaling law, 2/3, and with the baroclinic eddy 

scaling law, 7/10. The three values are so close that it may not be possible to differentiate 

them with 20% uncertainty in H. In fact, the mean power dependence of AT on H is about 

0.61 as can be seen in Table 2.3. It is close to that of the Ekman scaling law but is not 

significantly different from those of other scaling laws. 

In Table 2.4, the power dependence of AT on / using the linear least squares fit for 

fixed HN with the runs of r > 10 is listed. Although HN is fixed, H varies so AT ~ #0-61 

is assumed in the calculation.   If the correction to Hjf is neglected, i.e.   H is considered 
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Figure 2.14: AT versus / when HN = 50W. The experimental results are shown using 'x'. 
The solid line (slope=0.12) is the least squares fit to the data. The dashed line (slope=l/4) 
is for the geostrophic scaling law. The dotted line (slope=l/2) is for the Ekman scaling 
law. The dash-dotted line (slope=2/5) is for the baroclinic eddy scaling law. The thick 
solid line (mean slope=0.17) is for the corrected scaling law discussed in Section 2.3.4. An 
appropriate proportionality constant was applied to each case to fit the scaling laws to the 
data. 

61 



Table 2.3: The power dependence of AT on H using linear least squares fit for fixed /. 
Residual is the root mean square of normalized difference between the measurement and 
the estimation using the fit. 

Hs-1) 0.25 0.32 0.63 1.00 1.25 mean 
power 0.58 0.65 0.60 0.64 0.59 0.61 

residual 0.023 0.044 0.074 0.055 0.10 0.059 

Table 2.4: The power dependence of AT on / using the linear least squares fit solution for 
fixed Hpf. 

HN(W) 20 50 100 200 300 mean 
power 0.12 0.12 0.18 0.15 0.10 0.13 

residual 0.023 0.013 0.038 0.024 0.021 0.024 

constant, the power dependence decreases by about 10%. As seen in Table 2.1, the power 

dependence of AT on / with the Ekman scaling law is 1/2 and the one of the baroclinic 

eddy scaling law is 2/5; the values are about 3.5 to 4 times as large as the mean slope of 

the experimental result. The geostrophic scaling law shows the weakest power dependence, 

which is 1/4, but that value is also significantly larger than the mean slope of the constant 

H branches of the experiment, which is 0.13. Although the geostrophic scaling law is better 

than the others, the difference is too large to be attributed to experimental uncertainty or 

error. 

A Thermal Boundary Layer 

The thickness of a thermal boundary layer, ST, was estimated using temperature profiles 

at (x,y) — (49.5,96)cm as in Figure 2.13. The top of a boundary layer was defined as the 

depth at which Tn = 0.9. The resolution of the profile was not high enough to make accurate 

enough estimation of e-folding scale (T„ = 0.63). When Tn > 0.9, the temperature gradient 

was so tiny that small uncertainty in temperature can cause large error in the estimation. 

The thickness was measured with a ruler from the profiles with a 5mm resolution at best, 

thus a typical error was about ±2.5mm. As H was increased, the thermal boundary layer 
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Table 2.5: The power dependence of ST on / using linear least squares fit for fixed HM- 

HN(W) 20 50 100 200 mean 
power 0.20 0.29 0.27 0.50 0.32 

residual 0.04 0.04 0.03 0.05 0.04 

became thinner. The resolution became poorer and the error increased. 

In Fig. 2.15, the results for HN = 50W are shown in an {f,Sr) space with the scaling 

laws. Appropriate proportionality constants were applied to the scaling laws to make the 

comparison easier. As can be seen in Table 2.1, the power dependence of ST on H is —1/4 

for the geostrophic scaling law, —1/3 for the Ekman scaling law and —3/10 for the baroclinic 

eddy scaling law. The mean power dependence of ST on H in the experiment from the least 

squares fit is -0.25. It is close to that of the geostrophic scaling law but considering the 

uncertainty in ST, the power dependence is not significantly different from those of other 

scaling laws. The power dependence of ST on / is 1/4 for the geostrophic scaling law, which 

is the slope of the dashed line in Fig. 2.15, 1/2 for the Ekman scaling law, which is the slope 

of the dotted line in the figure, and 2/5 for the baroclinic eddy scaling law, which is the 

slope of the dashed-dotted line of the figure. It is easier to differentiate those three scaling 

laws in an (/, ST) space than an (H, ST) space. 

In the figure, the geostrophic scaling is better than the others. The slope of the least 

squares fit line is close to the power law of the geostrophic scaling law. In Table 2.5, the 

power dependence of ST on / using the linear least squares fit for fixed H^ is presented. In 

the runs with H^ > 200W, the thermal boundary layers were so thin that useful results 

could not be obtained, and they were excluded. The mean power dependence of ST on / 

is 0.32, so it is similar to that of the geostrophic scaling law or the baroclinic eddy scaling 

law. If the results with H^ = 200W, in which ST < 2cm so that the error was large, are 

excluded, the mean power dependence becomes similar to that of the geostrophic scaling 

law, 1/4. 
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Figure 2.15: ST versus / when H?f = 50W. The experimental results are shown using 'x'. 
The solid line (slope=0.29) is the least squares fit to the data. The dashed line (slope=l/4) 
is for the geostrophic scaling law. The dotted line (slope=l/2) is for the Ekman scaling 
law. The dash-dotted line (slope=2/5) is for the baroclinic eddy scaling law. The thick solid 
line is for the corrected scaling law discussed in the next section. Note that appropriate 
proportionality constants are applied to each scaling law to make the comparison easy. 

64 



2.3.4    A Corrected Scaling Law 

The preliminary comparison between the experimental results and the scaling laws suggests 

that the geostrophic law compares better with the results than others. The difference 

between the geostrophic law and the results, however, is too large to be considered as an 

experimental error or uncertainty. The geostrophic scaling law does not allow any frictional 

effects. In the experiment, however, there was always a frictional Ekman layer at the 

bottom. A correction to the geostrophic scaling law due to the bottom Ekman layer can be 

made if the thermal boundary layer of the experiment was thicker than the Ekman layer, 

which was satisfied by the experiments. 

The Ekman layer would reduce heat transport efficiency in two ways. First, the Ekman 

layer retarded the meridional geostrophic flow. It reduced the meridional mass and conse- 

quently heat transports. Second, there might be a temperature drop across the Ekman layer 

(assumed negligible in Hignett et al., 1981). The buoyancy forcing driving the geostrophic 

flow was weaker than that along the bottom. The role of the Ekman layer in the experiment 

is opposite to that in the Ekman scaling law, in which all the meridional mass and heat 

fluxes are solely due to the Ekman flux in the Ekman layer. 

The reduced heat transport efficiency requires a thicker thermal boundary layer or higher 

thermal forcing to maintain the same amount of meridional heat transport. As / decreases, 

the Ekman layer thickens so that the effects become larger; the power dependence of AT 

on / decreases. 

The geostrophic flow away from the Ekman layer is assumed to be driven by TQ 

ATG = AT - ATF. 

As sketched in Fig. 2.16, ATj? is the temperature drop across the Ekman layer. Temperature 

profile is exponential (Fig. 2.13) so 

T^Tr-fr- TB) ex.p{-z/5r). 

Here, T> is interior temperature, Tg is the temperature of the cooling plate. From the above 
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temperature distribution, we can define 

ATF = TI-T(6E),   and 

ATG = ATexp(-SE/ST). 

Here, AT = Tj — TB and 6E = (2u>/f)1^2, the Ekman layer thickness, are used. 

In Region I in Fig. 2.16, geostrophy is valid so thermal wind relation yields a velocity 

scale 

gaATGST(l - 6E/6T) 

fly 

since the thickness of Region I is (ST — SE)-   In Region II, the Ekman flux driven by a 

geostrophic flow of VG in a homogeneous fluid (Pedlosky, 1987), which is the same as the 

retarding Ekman flux, is 

QE = VG6E/2. 

The total meridional mass flux Q is 

Q = QG + QE ~ UG(6T - 6E) + UG6E/2 ~ UG(6T - SE/2). 

From the heat equation wTz w KTZZ, 

_ K Kly 
T     W      Q' 

here continuity W = Q/ly has been used. Meridional heat flux per unit width H/lx is then 

j- ~ p0Cp{UGATG(ST - SE) + UGATcSE/2}. 

The first term in the curly bracket is due to the geostrophic meridional flow in Region I 

as in Fig. 2.16, where the meridional temperature difference is ATG. The second term is 

due to the sum of the interior geostrophic flow and the retarding Ekman flux in Region II, 

where the meridional temperature difference is AT. 

If we assume SE/ST < 0(1), we can expand all the variables using SE/ST- Since r-1/2 = 

^El^Tni and a thermal boundary layer thickness for a non-rotating system Srn < ST, SO 

6E/5T < r-1/2. Thus, the condition r > 0(1), which we are interested in, and most of the 
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runs satisfy, makes the error of the expansion {SE/ST)
2
 = r * < 0(1). If we expand the 

variables using SE/STC 
and solve using external parameters H and /, 

AT^ipoCpga^ifH)1/2^-7-6^   * V>    and (2.27) 

^^H^T^'T-     (228) 
The above relations can be written using the ones from the geostrophic scaling law Srga and 

ATgs, which are in Table 2.1, as follows: 

ST ~ Srgs    1 + 
v      4<W 

/       S   \ (2-29) 

ATc~AT°i1+t)- 
As expected, the correction becomes larger as / becomes slower so that 5E becomes 

larger. The correction due to the Ekman layer, however, is small since SE/ST is small. Since 

SE increases as the rotation weakens, the correction becomes more important as expected. 

By introducing the main external parameters H and / to Eq. 2.28, one can calculate ST, 

which in turn can be used to obtain AT using Eq. 2.27. 

The relation between AT and / from the corrected scaling law when Hfj = 50W is 

shown in Fig. 2.14 as a thick solid curve with an appropriate proportionality constant. 

Since the corrected scaling law is a polynomial, we cannot obtain an unique power law but 

we can obtain an average value. The correction weakens the power dependence of AT on 

/ from 0.25 to about 0.17, which is closer to the experimental result 0.12. The relation 

between ST and / from the corrected scaling law when HN = 50W is in Fig. 2.15 as a thick 

solid line. The correction weakens the power dependence but the change is small compared 

to the scatter in the experimental data. 

In Fig. 2.17, r versus ATG/AT from the experiment is shown. In other words, what 

portion in AT was due to geostrophic flow? It clearly shows that the friction effect increases 

with decreasing r. A thermal boundary layer becomes thinner as r decreases so that the 

Ekman layer becomes thicker compared to the thermal boundary layer.   When r > 10, 
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Figure 2.17: r versus ATc/AT from the experiment. 

where most runs were done, more than 85% of AT was responsible for the geostrophic flow. 

The rest of AT was temperature drop across the Ekman layer, ATp. 

In Fig. 2.18, AT's from the corrected scaling law (ATc) and from the experiment 

(ATeip) are compared. In the figures, the runs with r > 0(1) were used. The dashed 

line represents perfect comparison between the scaling law and the experiment. The un- 

certainty in ATc, which is from the 20% uncertainty in H, is about 10%. The variations 

in the temperature measurement as shown in Fig. 2.10(b) cause about 3% uncertainty in 

ATeip. It is small compared to error in H and neglected. The thermal expansion coefficient 

a increases with temperature so a is assumed a linear function of temperature during the 

estimation of ATc. The effect, however, is small compared to the uncertainty in ATc. 

From the least squares solution to a line 

AT = io0-61±002AT°'79±0'04 (2.30) 

In Appendix 2.1, the estimation of the uncertainty in least squares solution is described. 

If all the meridional heat transport can be explained by the scaling law, ATeip and ATc 

should show a linear relation, i.e., ATeip ~ ATC, within the uncertainty interval of the 

experiment. Although such a linear relation is outside of the experimental fit, Eq. 2.30, the 
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fit itself is good since the uncertainty interval is small and no point is away from the fit. 

The internal parameter AT is determined by two control (external) parameters / and H^ 

that were varied independently by a factor of 10. Unless the dependences of AT on the 

external parameters are similar in the experiment and the scaling law such a fit cannot be 

obtained. The differences between the experiment and the corrected scaling law are small, 

so the scaling law can be considered as a first approximation of the experiment. In the 

other two scaling laws, the power dependences of AT on / are about three to four times 

larger than we observe, so statistically significant fits could not be obtained. 

What processes are responsible for such differences? The power dependence in the fit is 

less than 1. The heat transport processes in the experiment are more efficient than those 

in the corrected scaling law. Processes other than the meridional overturning governed by 

geostrophy and bottom friction must be involved in the heat transport . The condition for 

baroclinic instability in the thermal boundary layer is (Pedlosky; 1987) 

NST           2.399 
—r~ < k.c. , 
/ 7T 

where JV2 = —gaTz and Z&.c. is the length scale of baroclinic region. In the experiment, 

N&r/f « 20cm and lb.c. is comparable to the length of the tank. Baroclinic eddies could 

develop. The flow visualization, which is described in the next section, shows there were 

many eddies in the experiment. Although baroclinic eddies are not efficient enough to 

explain all the meridional heat transport of the experiment, they could contribute to the 

heat transport. 

By assuming that the thickness of the thermal boundary layer is determined by the 

corrected scaling law, i.e., ST in the baroclinic scaling law (Eq. 2.12) is replaced by 6T from 

the corrected scaling law, the residual in the fit (ATexp- 10°-61AT5) and AT from baroclinic 

scaling law were compared. A suitable choice of a 0(1) proportionality constant made the 

residual and the correction due to baroclinic eddies comparable. A statistically reasonable 

fit between the the two could not be obtained, however. 

In the absence of the bottom friction, the geostrophic scaling law can be used as an 
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approximation of the convective circulation in a rotating rectangular container. (The com- 

parison between the experimental results after the removal of the frictional effects and the 

geostrophic scaling law shows a fit similar to Eq. 2.30.) If we assume a linear relation 

between ATexp and ATc, we get 

ATexp = ATG:exp +~ATFtexp « 2.2ATC = 2.2(ATG + A3» 

from the least squares fit. Thus, 

ATG,rap « 2.2ATG, 

and from the geostrophic scaling law, ATQ = ATgs ~ Hj , where the meridional heat 

transport due to the geostrophic flow of the experiment is HQ . If we assume ATa,exp is 

fixed, and estimate meridional heat transport with the geostrophic scaling law, we get 

H9s ~ ATA
G%p » 2.2^HG,exp. 

If we invert the above relation, 

Hö,exp ~ 2.2    ' Hgs fa 0.35Hgs. 

In Bryan and Cox (1967)'s numerical experiment, the proportionality constant for the merid- 

ional heat transport is about 0.3 and comparable to the experimental result, 0.35. If the 

similar conversion is done with the proportionality constant in Eq. 2.30, 1006, we get 0.16. 

The proportionality constant for meridional transport must be within 0.26 ± 0.1. 

The correction due to the bottom friction was also applied to thermal boundary layer 

thickness. In Fig. 2.19, tfy's from the corrected scaling law (6TC) and the experiment (Srexp) 

are compared. The uncertainty in STC is due to that in H, and the error in STexp is from 

the resolution of vertical temperature profiles. The least squares fit to all data, which is the 

thin solid line of the figure, is 

STexp = 10-0.18±0.05^.4±0.24_ 

If the thermal boundary of the experiment can be explained by the scaling law com- 

pletely, ÖTexp ~ STC within the uncertainty interval of the fit. The deviation from a linear 
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relation is mostly due to the runs with ST < 2cm so that the resolution of the profiles, 

which was 5mm, was not high enough to give a reasonable estimation of ST- If the runs of 

ST < 2cm are excluded, the least squares fit to the data, which is the thick solid line of the 

figure, is 

STex   = 1QO-O4i0.07j0.94i0.35_ (2 31) 
f-exp 

Although the large errors in the data make the uncertainty interval of the fit large, the 

linear law is within the uncertainty interval. The values of ST are small and the scatter 

is large, so that the correction of the frictional effect does not have much effect. The 

thermal boundary layers from the two other scaling laws can be thicker than the water 

depth within the experimental parameter range, and power laws are significantly different 

from the experimental results. 

2.3.5    Flow Visualization and Zonal Temperature Sections 

The comparison between the experiment and the scaling law suggests that the experiment 

follows the corrected scaling law closely. To identify heat carrying flows directly, flow 

visualization was done using the thymol blue technique, and zonal temperature sections 

were made for selected parameters. In Fig. 2.20 flow patterns are shown. The method 

is equivalent to placing a source of neutrally buoyant dye at fixed locations, which are 

determined by the positions of visualization wires. The figures, thus, represent streak lines. 

A set of pictures from a single that shows the entire flow pattern was not obtained. All 

runs show a similar circulation patterns so pictures from different runs are compiled. 

The dye streak (Fig. 2.20(a)) shows that near the upper left corner, there is a cold 

current toward the cold end along the wall to the left (Flow I). The flow becomes zonal 

when it meets the cold end wall and flows anti-cyclonically along the cold end wall. When 

the flow reaches the meridional wall to the right, it turns toward the hot end wall (Flow II). 

When the cold flow reaches near the end of the cooling plate, most of the cold water turns 

toward the wall to the left and becomes zonal, while the remaining part of the cold water 

continues to flow toward the hot end along the wall to the right.  The zonal temperature 
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Figure 2.20: Flow pattern. Views from the above. The cold end wall is at the top and the 
hot wall is at the bottom of a picture. 

75 



(e) 

Figure 2.20 continued.: In (a) y = 90cm (over the cooling plate), z = lcm and t = 30mm., 
(b) y = 50cm (along the center zonal section), z = lcm and t = 30mm., (c) y = 50cm, 
z = 7cm and t = 30mm., (d) y = 10cm (over the heating pad), z = 7cm and t = 30min., 
(e) y = 50cm, z = 7cm, and t = 68mm., and (f) y = 90cm, z = 7cm and t = 63min. Here t 
means how long the wire has been activated in each case. In (a), (b), and (c), / = Is-1 and 
HN = 50W. In (d) and (e) / = 0.5s-1 and HN = 50W. In (f) / = Is"1 and HN = 200W. 
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section (Fig. 2.21(a)) also shows that there is an intensified cold water mass near the the 

wall to the right. As the zonal flow approaches to the wall to the left, most of it slowly turns 

toward the hot end wall (Flow III), and brings cold water to the hot end along the wall to 

the left (Flow IV in Fig. 2.20(b)). Some of the cold water from the wall to the right joins 

to Flow I and returns to the cold end. The two cold flows in opposite directions (Flows I 

and III) generate a dome-shaped cold water mass near the wall to the left as can be seen 

in Fig. 2.21(a). As sketch in Fig. 2.22, the water in the thermal boundary layer circulates 

anti-cyclonically over the cooling plates (Flows I, II), while some of it flows toward the hot 

end along the meridional wall to the left (Flow III). 

As shown in Fig. 2.20(b), the major cold flow from the cold end toward the hot end is 

along the wall to the left (Flow IV). The figure also shows that there is another cold flow 

(Flow V) near the wall to the right, but it is weak compared to Flow IV. Thus, the zonal 

temperature section across the center of the tank shows more cold water near the wall to 

the left as shown in Fig. 2.21(b). 

Between the center meridional section and the section near the cooling plate, the cold 

flow is mostly zonal. In the experiment, the cooling was confined to the upper 80cm < x < 

100cm of the tank. Until the warm water reached near the cooling plate, the water could 

maintain its heat content and the meridional temperature gradient along the bottom was 

small. In Fig. 2.23, the meridional temperature gradient is small when y < 60cm. 

As the water flowed over the cooling plate, the cooling started and the thermal boundary 

layer was formed. The meridional temperature gradient became larger over the boundary 

between the cooling plate and the insulating center plate (60cm < y < 90cm in Figs. 2.23 

and 2.12), and the gradient supported the zonal flow. Such a large temperature gradient 

made the boundary condition of this experiment different from those of numerical models 

or experiments, which were sinusoidal or linear. The temperature and velocity distribution 

of this experiment, especially near the boundary between the cooling plate and the middle 

plate, might be different from those of other studies. However, we are more interested 

in scaling laws related to large scale features and the experiment turned out to meet this 
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Figure 2.21: Zonal temperature sections when f = Is  l and H^ = 50W (a) y = 70cm, (b) 
y = 50cm, and (c) y = 30cm. 
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Figure 2.22: A schematic diagram of flow pattern. A solid curve represents cold current and 
a dotted curve represents warm current. If a solid curve and a dotted curve are stacked, 
the cold flow is near the bottom and warm flow is above the cold flow. 
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Figure 2.23: Normalized temperature along the bottom of the center meridional sections 
(x = 49.5cm) with HN = 50W. Note that the temperature over the cooling plate was 
overestimated due to the size of the thermistors. 

purpose. 

Fig. 2.20(d) shows that warm water starts near the lower left corner and flows toward 

the upper right corner (Flow VII-H). Over the heating pad, the vertical motion was active. 

The dye would mix with the ambient water and decay rapidly so the streaks are not very 

clear. The center meridional section (Fig. 2.20(c)), however, shows the motion of the warm 

water clearly; the warm water flows toward the cold end along the center of the tank (Flow 

VII). It extends almost to the bottom so that the flow toward the cold end in Fig. 2.20(b) 

(Flow VII-B) is not cold water but a warm water as can be seen in the zonal temperature 

section Fig. 2.21(b). 

When the warm water (Flow VII) reaches near the cooling plates, it splits into two 

zonal flows; one flows to the left forming cyclonic circulation (Flow VII-L), and the other 

flows to the right forming anti-cyclonic circulation (Flow VII-R) as shown in Fig. 2.20(e). 

When Flow VII-R meets the wall to the right, some of it returns toward the hot end along 

the wall to the right. The flow can be seen clearly in Fig. 2.20(c) near the wall to the 

right (Flow VIII). The remaining part of Flow VII-R turns cyclonically toward the cold end 

80 



and circulate along the walls of the tank. In Fig. 2.20(f), most of the dyed water started 

along the zonal visualization wire at y = 90cm and z = 7cm and flows cyclonically along 

the walls of the tank. The flow toward the hot end along the wall to the left (Flow VI in 

Fig. 2.20(c)) represents a part of the cyclonic warm flow. Flow VII-L eventually joins to the 

warm flow (Flow VI) and returned to the hot end. The motion of the warm water described 

is summarized in Fig. 2.22 as dashed lines 

The flow pattern is more complicated than the one suggested earlier (Fig. 2.4). The 

circulation over the cooling plate, however, is similar to the expectation. To compensate 

for the diffusive heat loss through the cooling plates, warm water sank into the thermal 

boundary layer. The warm water experienced vortex column stretching, and a cyclonic 

circulation was induced. The cold water experienced vortex column squashing and a anti- 

cyclonic circulation was induced as sketched in Fig. 2.22. 

In the equilibrium, the vertical vorticity balance in an /-plane was 

fwz = i,V2C, 

i.e., the production of vorticity by the vertical motion {fwz) was dissipated by friction, 

since the thermal Rossby number RT < 0.1, / » £. and pressure p = p{p) so the baroclinic 

vorticity production VpxVp = 0. Here, £ is the vertical component of the relative vorticity. 

In the thermal boundary layer, the frictional dissipation occurred in the Ekman layer along 

the bottom so 

w      c 
ST       6% 

Thus, 

^       I       ST' 

and from continuity we can see that the horizontal motion (UR) induced by the relative 

vorticity is comparable to the speed of the overturning circulation. 

The top surface is a free boundary so that in the interior away from the thermal bound- 

ary layer, the dissipation occurred within the side wall frictional boundary layers. In the 

presence of stratification, the thickness of a side wall boundary layer is 8E (Barcilon and 
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Pedlosky, 1967). The stretching occurred over the horizontal surface but the dissipation oc- 

curred along the walls. If the areas of each surface are considered in the vorticity balance, 

tWfl C Al fYl ~v¥E
dl 

SO 

w 

where e = d/l, the aspect ratio. In the experiment, de is 1.4cm and comparable to the 

thickness of the thermal boundary layer so are W/de and W/5T- AS the visualization 

shows, the vortical motions induced by the vertical velocity in the thermal boundary layer 

and the interior are within the same order of magnitude, although they are in opposite 

direction. 

The warm water from the hot end did not show significant vortical motion until it met the 

cold water. If there was no thermal boundary layer, the water was almost homogeneous so 

that the Taylor-Proudman theorem held and wz = 0. The downwelling, which compensated 

for the active upwelling over the heating pad, was constant within the geostrophic interior. 

The variation in the vertical velocity would be confined to the Ekman layer, and the vertical 

motion could not induce relative vorticity. As the warm water reached near the cooling 

plates, it started to feel the the thermal boundary at the bottom. Some of the water turned 

anti-cyclonically along the edge of the thermal boundary layer to conserve its potential 

vorticity, while some turned cyclonically due to the vortex column stretching. 

In addition to the mean circulation, the visualization shows that there are many eddies 

in the warm water, whereas there are fewer in the cold water. The eddies within the warm 

water could not contribute heat transport because meridional temperature gradient in the 

warm water was almost zero. The eddies near the boundary between the cold water and 

warm water were expected to enhance mixing and heat transport locally. 

The heat loss through the walls of the tank could deform isotherms and induce flows. 

The water in the tank was always warmer than the room temperature so that the heat loss 

would make isotherms tilt upward within a diffusive layer near the walls. If the diffusion 
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was a dominant process near the walls, the tilt in isotherm should be generic in temperature 

sections. Such isotherm tilt can be found in some locations (in Figs. 2.21(b) and (c), near 

x = 100cm), but there is no reason that the heat loss was confined to those locations; the 

tilt is not related to the diffusive layer but to the interior geostrophic flows. In Figs. 2.21(b) 

and (c), 0.9 isotherms near x = 0cm are vertical. They might be an evidence of convective 

motion due to the side wall heat loss. The thickness of the side wall boundary layer is then 

about 3cm. The flow visualization (Fig. 2.20) does not show any significant difference in 

flow pattern within about 3cm from the walls; the heat loss through the side wall did not 

modify the flow noticeably. 

During the visualization, when the cover was removed, the formation of a few centime- 

ters wide eddies, which were significantly smaller than those in Fig. 2.20, was observed 

throughout the tank within a few minutes. The eddies were due to the heat loss through 

the surface of the water. The evaporative heat loss described in Section 2.2.2 also could 

generate such eddies. The surface water temperature was uniform so that the formation 

of the eddies could not be localized. The eddies could modify the heat transport efficiency 

uniformly, but the evaporative heat loss was less than 20% of the meridional heat transport. 

The effects of the eddies due to the evaporation must not be significant. 

Estimation of Geostrophic Shear Since zonal temperature sections are similar within 

the thermal boundary layers regardless of / and HN, the geostrophic shear was estimated 

from a run with a relatively thick thermal boundary layer. Most of the stratification was 

confined to the thermal boundary layers where temperature distribution was not resolved 

well. Furthermore, the error in a thermistor could cause uncertainty comparable to the 

speed of the meridional overturning. Thus, the estimation of the geostrophic shear from 

the zonal sections, which are given in Fig. 2.24, should be analyzed with care. 

Over the cooling region there were strong zonal flows. When they reached to the merid- 

ional wall, they turned toward the hot end or cold end. The dye streaks mixed and it 

was not possible to estimate flow speeds accurately.   Since we are more interested in the 
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Figure 2.24: Geostrophic shear estimated from zonal temperature sections when / = Is * 
and HN = 50W (a) y = 70cm, (b) y = 50cm, and (c) y = 30cm. The unit of the contours 
is lO-^s-1. 
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meridional flows, the focus will be given to the center zonal sections where the flow was 

predominantly meridional. 

When Figs. 2.20(b) and (c) are compared, we can see that the flow toward the hot end 

along the wall to the right becomes stronger with height. The vertical shear between Flows 

V and VIII in Fig. 2.20 is 

(-24cm/30rmn - (-5cm/30mm))/6cm = -1.8 x 10~3s_1 

excluding x > 90cm. The mean shear in this region from Fig. 2.24(b) is about -3 x 10~3 ~ 

-2 x 10~3s_1 and comparable to that from the visualization. The warm flow (Flow VIII), 

in fact, intensifies toward the wall to the right but the cold flow (Flow V) becomes weaker 

(Fig. 2.20(c)). Thus, the shear intensifies to the right as in Fig. 2.24(b). 

When x < 40cm, the shear is positive within the bottom 2cm or so. In Fig. 2.20, Flow 

III is faster than Flow VI. Although the visualization was done in the same level, Flow III is 

colder than Flow IV. When it reached the center section it would be below the visualization 

wire of the section. The estimate of the vertical shear between the two cold flows is 

(-40cm/30min - (-20cm/30mm))/lcm = 10 x -10~3s_1. 

The spacing between the two cold flows could not be obtained accurately, so we assumed 

that the spacing is 1cm, the depth of the visualization wire in Fig. 2.20(b). The actual 

spacing must be smaller than 1cm so the estimate can be considered as a lower bound. The 

estimation from the zonal temperature section is about -15 x 10-3s_1 so that they are 

about the same magnitude. 

Except for x > 80cm and away from the bottom 1cm, the flow pattern is basically 

barotropic. The vertical shear is small as can be seen in Fig. 2.24(b). Although flow 

visualization was not made near the heating pad, the dye streaks from the center zonal 

section maintain the barotropic tendency until they are exposed to the heating pad directly. 

The vertical shear along y = 30cm (Fig. 2.24(c)), thus, is similar to that along y = 50cm. 

Near the cooling plate (y = 70cm), there is a thin positive shear layer centered at 

x = 23cm neat the bottom. As in other sections, this represents the cold flow toward the 
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hot end in Fig. 2.20(a) (Flow III). Visualization was not made along the section so that the 

value cannot be verified. 

Due to the poor resolution of the temperature within the thermal boundary layer and the 

error in the thermistors, the accurate estimation of vertical shear could not be obtained. The 

comparison between the geostrophic shear estimation and the flow visualization, however, 

shows that they are within the same order of magnitude. 
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2.4    Discussion 

The experiment showed that convection driven by differential heating in a rectangular basin 

can be explained by the geostrophic scaling law in the absence of friction. The experiment, 

however, lacks two important factors of the real oceans, which are the /^-effect and the wind 

stress at the surface of the oceans. Using a simple scaling argument, the effects of ß and 

the surface wind stress on such convective circulation are described. 

2.4.1    Convective Circulation in a ß-plane 

Stern (1975) derived a scaling law for convective circulation in a pie-shape basin in a ß- 

plane. The thermal wind balance, and a balance between downward heat diffusion and 

upwelling of cold water were assumed. By assuming that the potential energy released by 

warm rising thermocline motion and cold sinking polar motion is balanced by dissipation in 

the Ekman layer, he derived the same scaling law for the thickness of a thermal boundary 

layer as that of a rotating annulus, the Ekman scaling law described in Section 2.1.2. 

He concluded that both the /?-effect and meridional boundaries were not important 

in thermal boundary layer structures. Although meridional boundaries were included, the 

meridional geostrophic flow due to zonal pressure gradient was not included. The meridional 

mass transport was from the Ekman transport driven by zonal geostrophic flows as in his 

Ekman scaling law. 

It is not easy to simulate the baroclinic /3-effect with a stratified laboratory experiment, 

so the effect of ß on convective circulation is discussed using a simple scaling argument. 

Assume a rectangular ocean in a /?-plane as sketched in Fig. 2.25. Meridional temperature 

difference AT is applied along the surface. If we exclude the water mass formation region, 

which is confined to a narrow region near the northern end, the ocean can be considered as 

a two-layer system. The lower layer is equivalent to the homogeneous deep oceans below the 

thermocline. The upper layer is equivalent to the surface layer above the the thermocline. 

The interface, thus, is equivalent to the thermocline. 

Assume uniform vertical motion W, which compensates the water mass formation, from 
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the lower layer into the upper layer across the interface. The water mass formation in the 

northern region drives the circulation in the lower layer as in Stommel and Arons (1960). 

The interior vertical motion stretches the lower layer so the linear vorticity balance in the 

lower layer 

a tdw 

yields 

ßV2{d-6T) = fW, 

since vertical motion vanishes at the bottom. Here V2 is the meridional velocity scale in 

the lower layer. If the thermal boundary layer is thinner than the depth of the basin, i.e., 

fW 
v>~71>0' 

so the interior flow is northward. 

To the north of a certain latitude line 9, the mass balance in the lower layer among the 

interior mass transport Q21 ~ dlxV2, the western boundary transport Q2W1 vertical mass 

flux WA(9), where A{9) is the surface area of the basin north of 9, and the water mass 

formation rate S = WA(9s), where the southern wall of the basin is at Ö5 and A(9s) = lxly> 

requires 

Q2W = -Q21 -S + WA{9) < 0. 

The western boundary current is southward, and its transport is larger than that in the 

interior since the interior has to supply the upwelling. The net meridional transport in the 

lower layer is Q%w + Q21 = —S + WA(9), and is southward and smaller than |Q2w| and 

IQ2/I as in Stommel and Arons (1960). 

The vertical motion shrinks the upper layer so the vorticity equation yields the merid- 

ional velocity in the upper layer V\ 

fW F'~-k<0' 
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and the interior flow is southward. If we consider the mass balance in the upper layer to 

the north of 9, 

Qiw = -Qu + S- WA{9) > 0. 

The western boundary transport is northward and its transport is larger than that in the 

interior. The upwelled water should return to the north to satisfy continuity. The interior 

flow is southward and it cannot carry the upwelled water. Instead, the northward western 

boundary current should take the water to the north so the boundary transport is larger 

than the interior transport. The net meridional transport is Q\w + Qu = S — WA(9), and 

is northward. As in the lower layer, the transport is smaller than \Qiw\ and \Qu\. 

The interior flows in the lower layer and the upper layer are opposite direction so that 

the thermal wind relation requires 

f(Vi-Vi)     g«AT 
ST ly 

Here, we assume Ty ~ Tx. If we assume ST <^.d and use V\ and V2 obtained earlier, 

The upward advection of cold water across the interface should be balanced by the 

downward diffusion of heat (wTz w KTZZ), SO 

ÖT 

If we eliminate W from the above two relations, the thermal boundary layer thickness ST 

becomes *-~fe^r-        <2-32) 
This is the same as that by Robinson and Stommel (1959), Eq. 2.21. 

The meridional heat flux H is 

H ~ PoCpATS, 
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and since S = Wlxly 
1/3 

H^oCp{i^^iy\ (2.33) 
If ß = f/ly is introduced, ST and H in Eqs. 2.32 and 2.33 are the same as those of a 

rectangular basin in /-plane, Eqs. 2.17 and 2.20, respectively. 

Stommel (1965) calculated the circulation driven by uniform vertical motion in a two- 

layer ocean using the linear vorticity balance and mass balance as in this study, when the 

thickness of the interface is given. Later, Veronis (1976) solved such a problem much more 

rigorously and obtained circulation pattern and the shape of the interface, when the upper 

layer depth along the eastern boundary is given. The unknown locations and rate of deep 

water mass formation in remote oceans, that communicates with the basin of interest, does 

not allow one to obtain exact solutions. If we confine our interest to a single hemispheric 

basin, and specify the location and the rate of water mass formation, we can obtain exact 

solution within his framework. However, there is no way of parameterizing the upper 

layer depth along the eastern boundary, that determines the scale depth of the interface. 

Although the analysis of circulation in /?-plane described in this paper is much simpler than 

those of Stommel (1965) and Veronis (1976), it was possible to determine the thickness of 

upper layer by introducing the thermodynamics. 

In an /-plane basin, the vertical motion due to water mass formation induces relative 

vorticity and horizontal circulations. The combination of the horizontal gyres and the 

meridional overturning circulation happens to produce strong flows near the wall to the left 

(equivalent to the west in the Northern hemisphere) looking from warm region to cold region 

as shown in Fig. 2.4. There, however, is no distinction between the interior and western 

boundary layer in dynamics. The relative vorticity is balanced by dissipation within the 

frictional layers along the boundaries of the container. In a /3-plane basin, in the interior, 

the vertical motion produces not relative vorticity but southward or northward motion due 

to the planetary vorticity gradient. The western boundary layer is required to balance mass 

and vorticity as the interior circulations forces. 

Although, the balances for horizontal motions are different in two cases, the scales for 

91 



the meridional heat transport and thermocline thickness follow the same relation. Winton 

(1996) performed a series of numerical experiments in which ß was varied. When ß was 

increased from zero to the standard value of the oceans 2x 10_11m_1s_1 with f0 = 10_4s_1, 

the meridional heat transport was increased by 20%. This does not necessary prove that ß- 

effect and the western boundary current do not play any role in the meridional overturning 

circulation, but this tells us that / determines most of the meridional heat transport at 

least within the parameter range of oceanic relevance. Since a thermal boundary layer is an 

indicator of heat transfer efficiency (as explained in Section 2.1.5) and the heat transports 

are the same in both oceans, so do &r's. 

2.4.2    The Effect of Wind Stress 

In Bryan and Cox (1967), wind stress at the surface had no apparent effect on meridional 

heat transport, although the wind stress changed horizontal circulation from a single gyre 

structure to a faster double gyre one. The wind driven gyre was faster than the thermally 

driven one, but a large part of the former is simply recirculation and did not contribute to 

the meridional overturning circulation much. 

The thermocline thickness from the geostrophic scaling law (the advective-diffusive ther- 

mocline) is not compatible to the Ekman pumping at the surface. Stommel and Webster 

(1962) show how Ekman pumping modifies the advective-diffusive thermocline in the in- 

terior of an ocean with a similarity solution. The zonal advection of heat was neglected, 

and the same vertical structure and a balance between the advection and diffusion were 

assumed. The ocean could be divided into two vertical regions. The upper region is above 

the thermocline with W > 0, and the lower region is below the thermocline W < 0. The 

interface between the two layer represents the depth of the thermocline. The diffusion acts 

only at the interface so that the density balance is advective away from the interface. The 

location and the thickness of the interface are determined by matching temperature, vertical 

velocity and their vertical gradients through the interface. 

In a subtropical ocean, the thermocline becomes an internal boundary layer. The depth 
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is the same as the thermocline thickness from the ideal fluid (wind driven) thermocline 

theory (<5a from Eq. 2.23). The thickness of the boundary layer is 

Si 
( dp0K \1/2_/ dif0K y/2 

[gaATSaßJ \gaAT6a)     ' 

where 6a is given in Eq. 2.23 and ß = f0/l is used. If the values used to estimate ST and 

Sa in Section 2.1.6 are introduced to the above relation, <5j is about 100m and smaller than 

6a. In subpolar ocean, w < 0 from the top to the bottom so that the interface becomes the 

same as the sea surface. Ekman suction at the surface lifts the thermocline and makes it 

shallow. Salmon (1990) showed similar results with a similarity solution of a simpler form. 

We can guess that wind stress does not change the meridional heat transport much, but 

it does change the thermocline depth; where WE < 0, it makes the thermocline deep, and 

where WE > 0, it makes the thermocline shallow. At this stage, however, it is not possible to 

a give quantitative answer to how the surface wind stress modifies the thermocline thickness 

and the meridional heat flux of the diffusive thermocline theory. 
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Appendix 2.1 

The least square solution of an overdetermined system with a set of N data points 

(xi, yi) to a linear model 

Y = Xm, 

where, 

m = (a b)T, 

y = (yi • • • VN)
T

, and 

/ 

X = 

1     X\ 

1    x2 

\ 

is 

\   1      XN   J 

m = (XJ X)-XXJ Y. 

Here, rcj's are the values of the dependent variable known exactly, y^'s are known measure- 

ments, a and b are model parameters, and the superscript 'T" means transpose. When the 

variance in Y is known, the variance in m, cov(m), can be estimated as follows (Menke, 

1989); 

cov(m) = ((XTX)-1XT)S((XTX)-1XT):r. 

Here, S is a diagonal matrix and Su is the variance of yi. The diagonal elements of cov(m) 

represent the variance of m. 

In the experiment, Xj's are ATc and STC from the corrected scaling law, and y;'s are 

AT and ST from the measurements, respectively. In the analysis, Xj's are to be known 

exactly. In the experiments, however, uncertainty in H produces uncertainty in x^s and 

measurement error produces uncertainty in y;'s. 

In the case of AT, uncertainties x^s are much larger so the uncertainties in y;'s are 

ignored. The least squares solution of Xi = ab-1 + b~lyi and its variance are obtained while 

considering —ab^1 and 6_1 as model parameters. By inverting the solution, a and b along 
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with their variances were obtained. It is possible that y; = a + bxi and xi = ab~l + b~lyi 

yield different solutions since model parameters are different. In this case, the scatter in 

the data is small so that the difference is very small and not significant. 

In the case of ST both Xj's and yi have uncertainties. The variances in the model 

parameters due to those in yi could be obtained easily from cov(m). The scatter in the 

data is large so that yi = a + bxi and Xi = ab"1 + b~lyi yield different solutions. Thus, the 

uncertainties in a and b due to those in Xi could not be obtained by solving Xi = ab~1+b~1yi. 

Considering the propagation of errors, the variance a% in the values of any function v (Press 

et. al., 1986) is 
N 

°% = Y,°xi{fxi)
2, 

i=l 

where v is a or b. Since the uncertainties in XJ'S and y;'s are independent, the larger values 

are taken. 
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Chapter 3 

A Box Model 

3.1    Introduction 

The sea surface thermal forcing, which acts in the direction of the present thermohaline 

circulation in the North Atlantic, is opposite to the haline forcing from the fresh water flux. 

The strong negative feedback between the sea surface temperature and the surface heat 

flux removes changes in the sea surface temperature rapidly. However, the fresh water flux, 

which arises from the local imbalance between precipitation and evaporation, is independent 

of the sea surface salinity. It has been known that the competition between the two forcings 

and the difference in the boundary conditions of temperature and salinity may give rise 

to multiple equilibria of the thermohaline circulation under identical boundary conditions 

(See Weaver and Hughes, 1992; Marotzke, 1994; Whitehead, 1995 for reviews). Thus, the 

thermohaline circulation driven by the two competitive forcings can be unstable against 

changes in the fresh water flux (Huang et al, 1992) or salinity in polar oceans (Walin, 1985; 

Marotzke, 1990). 

If, for example, we assume that the fresh water flux to the polar ocean becomes larger 

somehow, then the salinity of the polar ocean declines so that the meridional surface salinity 

gradient intensifies. We may be able to assume, however, the strong negative feedback 

between the sea surface temperature and heat flux does not allow much change in the 
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sea surface temperature and the meridional sea surface temperature gradient. The change 

in the surface salinity gradient is mainly responsible for the variations in the meridional 

surface density gradient, which drives the circulation. The increased surface salinity gradient 

weakens the surface density gradient, and subsequently the circulation. The polar ocean 

gains more fresh water so that the polar salinity declines further. The salinity gradient 

intensifies more and the circulation weakens further until it reaches a new equilibrium. 

If the change in the fresh water flux is large enough, the circulation becomes so slow 

that the salinity anomaly cannot be removed but intensifies until the salinity gradient 

overcomes the temperature gradient and reverses the circulation. This reversal is known to 

occur rapidly so it is called a thermohaline catastrophe. Since the thermohaline circulation 

is responsible for more than half of the oceanic meridional heat transport in the North 

Atlantic (Bryden and Hall, 1980; Hall and Bryden, 1982), such a sudden change in the 

circulation would cause large effects on the climate of the earth. 

Studies ranging from simple box models to fully developed primitive equation numerical 

models have demonstrated the thermohaline catastrophe. With a box model such as Stom- 

mel (1961), it is easier to change parameters and study processes related to the stability 

of thermohaline circulation. The basic principle of a box model is simple. There are two 

well-mixed boxes; one for a polar ocean and the other for an equatorial ocean as sketched 

in Fig. 3.1. The density in each box is determined by the air-sea heat and the fresh water 

exchanges (or virtual salt flux) and the advection of heat and salt between the adjacent 

boxes. The density difference between the boxes determines the circulation and thereby the 

advection of heat and salt. 

When the thermal forcing dominates, it drives a thermal mode circulation. The density 

in each box is mainly determined by temperature so that the water in the polar box is 

denser. The cold and fresh deep current flows from the polar box to the equatorial box, and 

the warm and salty surface return current flows from the equatorial box to the polar box. 

When the haline forcing dominates, it drives a haline mode circulation, which is opposite 

to the thermal mode circulation. The density is mainly determined by salinity so that the 
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A Two Box Model 

Figure 3.1: A configuration of a two box model. The temperature of each box Tj, where 
i = P and E, are restored to T-. The salinity of each box is S*. Hs represents air-sea fresh 
water exchange or virtual salt flux. The mass transport * is determined by the density 
difference between the two boxes. A counterclockwise circulation gives positive $>. 
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water in the equatorial box is denser. The warm and salty deep current flows from the 

equatorial box to the polar box and the cold and fresh surface current flows from the polar 

box to the equatorial box. 

Since the difference in the boundary conditions of temperature and salinity can cause 

the thermohaline catastrophe, many studies have been focused on the parameterization of 

boundary conditions for temperature and salinity, in other words the air-sea heat and fresh 

water exchanges. In the case of temperature, a restoring boundary condition (Haney, 1971) 

in T£ f  ~~~      SGQr heat flux ~ —  
TT 

has been commonly used. Here, TT is a restoring time constant for temperature, and the 

subscript 'ref' is for a reference value. 

In the case of salinity boundary conditions, there are a few ways. (For more detail 

discussions of salinity boundary conditions see Huang (1993).) One is fresh water flux 

from evaporation (E) minus precipitation (P) and river run off. The fresh water flux at 

the surface not only modifies salinity but also drives circulation such as the Goldsbrough- 

Stommel circulation (Goldsbrough, 1933; Stommel, 1957; Huang and Schmitt, 1993). 

Another is a virtual salt flux condition, which is deduced from E — P as follows: 

~Q 

salt flux ~ (E-P)-, 
a 

where d is the depth of a box. Another is a restoring boundary condition 

,,  a            &ref      &sea salt flux ~ , 
rs 

here Srej is a reference salinity. In the oceans, not salt but fresh water leaves or enters 

the surface so that the fresh water flux condition is physical and natural as Huang (1993) 

shows. However, when rs —>• oo and Sref —>• oo, with a finite Sref/rs, the virtual salt flux is 

weakly influenced by salinity so that a restoring boundary condition can be used as a first 

approximation to a flux boundary condition (Welander, 1986). In most studies, however, 

Sref is determined from climatological mean surface salinity. It also has been shown that 
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when TS » ry, the thermohaline catastrophe is possible under restoring conditions for 

temperature and salinity (Stommel, 1961). 

The salinity boundary conditions described earlier are independent of the sea surface 

temperature, although the evaporation (E) is dependent upon the sea surface temperature. 

If we assume the thermal mode circulation becomes weaker somehow, the meridional tem- 

perature gradient becomes larger so that the equatorial box becomes warmer or the polar 

box becomes colder. As the equatorial oceans become warmer, more fresh water evaporates 

while producing a positive salinity anomaly. The evaporated fresh water is carried to the 

polar oceans by atmospheric motion and produces a negative salinity anomaly in the polar 

oceans. The meridional salinity gradients becomes stronger so that the circulation becomes 

weaker. The meridional temperature gradient intensifies further, and so does the fresh wa- 

ter flux. Thus, the interaction between the sea surface temperature gradient and the fresh 

water flux produces a positive feedback to the thermal mode circulation. 

Recently, a virtual salt flux condition from (E-P) that includes the positive feedback 

has been introduced in a series of studies by Nakamura et al. (1994), Marotzke and Stone 

(1995), and Marotzke (1996). The fresh water flux of the condition 

(E-P) = ^(TE-TP)n. 

Here ew is the ratio of the ocean area to the catchment area of the ocean basin, and 7„ 

is atmospheric transport efficiency. Since the boundary condition includes the interaction 

between the sea surface temperature and the fresh water flux, it can be called an "inter- 

active" salinity boundary condition. (In Nakamura it et al. (1994), it is called the "eddy 

moisture transport-thermohaline circulation" (EMT) feedback since eddy activities, which 

become stronger as meridional temperature gradient increases, are responsible for the fresh 

water transport in the atmosphere so the interaction between the fresh water flux and ther- 

mohaline circulation.) When n = 0, the virtual salt flux from the interactive condition 

is the same as that from fixed (E — P). A thermal mode circulation with the interactive 

condition is less stable than one with fixed (E-P) or a restoring boundary condition for 
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salinity (Nakamura et al, 1994; Marotzke and Stone, 1995; Marotzke, 1996). 

Another density determining factor, whose effect on the stability of the thermohaline 

circulation has mostly been neglected, is the heat and salt advection that is controlled by 

the mass flux \P between the adjacent boxes. In almost all the box models, 

ty ~ Ap, 

where Ap is the density difference between the two adjacent boxes. The relation can be 

motivated from the balance between frictional dissipation (KUZZ) and a meridional pressure 

gradient (py/p0) (Stommel, 1961), which is 

KU/1
2
 » AP/Dp0 ~ Ap. 

The proportionality constant of such a relation can be chosen to meet the observed oceanic 

values of thermohaline circulation, which is * « lOSv when AT = 20°C and AS = 2ppt. 

While introducing such a scaling law, the effect of the Earth's rotation is not considered 

at all (Stommel, 1961; Thual and McWilliams, 1992) or it was claimed that the effect has 

been included in the scaling law (Joyce, 1991). 

In a box model, the equation of motion is highly truncated or integrated for simplicity. 

It is not easy to include some important factors of the thermohaline circulation such as 

the effects of the thermocline and rotation explicitly. Using a 2 x 2 box model, Huang et 

al. (1992), in fact, showed that the thermohaline catastrophe is a surface phenomenon, 

geometrically depending on the thickness of the upper boxes, which is equivalent to the 

thermocline depth. If a proper scaling law is used, the effects of the Earth's rotation 

and the thermocline on heat and salt transports can be included in a box model without 

increasing the resolution. 

Based on Stommel (1961), a simple two-box model with the mass transport relation 

from the geostrophic scaling law (Eq. 2.19) is developed. Numerical experiments by Colin 

de Verdiere (1988) and Huang and Chou (1994) show that the meridional mass transport 

does not follow the geostrophic scaling law, although the meridional heat transport and 

the thickness of the thermal boundary layer (Bryan, 1991) do.   The relations confirmed 
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through the experiment described in Chapter 2 are not for the mass transports but for the 

meridional heat transport and the thermal boundary layer thickness. As discussed later 

in this chapter, the advection of buoyancy is more important in determining the structure 

of the model than the mass transport. For the convenience of the calculation, the mass 

transport relation is used in the model. 

In the temperature equations of the model, restoring boundary conditions are used. 

The results are compared with those from a model with frictional mass transport law while 

focusing on the catastrophic transition points. By comparing results under a restoring 

salinity conditions and the interactive condition, the effects of salinity boundary condition 

on the stability of thermohaline circulation is also studied. 
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3.2    A Two Box Model 

The model consists of a polar box and an equatorial box as shown in Fig. 3.1, whose 

geometry is basically the same as that of Stommel (1961). The equations of temperature 

and salinity in each box, using notations of Thual and McWilliams (1992), are 

Vpfp = CTp{fp-Tp) + \mTE-TP) 

VpSp = VpHSP + \V\(SE-Sp) 

VEfE = CTE{fE-TE) + \%{TP-TE) 

VESE = VEHSE + \mSp-SE) (3il) 

restoring    Hsi = —(Si — Si), i = P,E 

(        TS  1 HSE = -Fn(TE-TP)n 

interactive    < z 

HSP = —HsE- 

The subscript P is for the polar box and E is for the equatorial box. The quantities with 

a hat such as T and S are reference temperature and salinity. The volume of a box is Vi, 

where i = E or P, TT = Vi/Cn and TS = Vi/Csi are restoring time scales for temperature 

and salinity, respectively, and Fn = (jnS)/{ewd). 

The volume transport between the boxes $ can be represented in two different ways: 

_    f qG = CG[a{TE-Tp)-ß{SE-Sp)}llz   geostrophic 

*F = CF[a(TE - TP) - ß(SE - SP)]        frictional, 

where CG and CF are constants whose values are set to yield \I> = IQSv. when AT = 20°C 

and AiS = 2ppt, which is the present oceanic state of the model. For thermal mode $ > 0, 

and for haline mode \& < 0. 

In the temperature (salinity) equation, the first terms in the right hand side represent 

air-sea heat (fresh water or salt) exchange, and the second terms represent advective heat 

(salt) flux from the adjacent box. The heat (salt) advection is independent of the sign 

of \& since it is determined by the magnitude of the meridional mass transport and the 

temperature (salinity) difference between the two boxes. 
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Following Thual and McWilliams (1992), the non-dimensionalization factors for the 

variables are 

time TTO = 100 days 

mass transport        (1/Vp + 1/VE)
-1

/
T

TO 

temperature      {l/VP + l/VE)~l IQ-TTOCF 

salinity {1/VP + 1/VE)"
1

 hrToCF. 

The mass transport * is determined by Ap = a(TE - TP) - ß(SE - SP), so 0 = TE - Tp 

and E = SE — SP are more convenient variables than T and S. The dimensionless equations 

are then 
e = c-e(T + |*|), 

s = fr4-E|*|, (3.3) 

A(G - E)1/3 = AAp1/3   geostrophic model 

0 — £ = Ap frictional model 

#,= 
rf — ^rS     restoring condition 

(3-5) 
,  FnQ

n       interactive condition, 

where A = CGCF
/3[(1/VP + 1/VE)TT}

2
/
3
. The thermal forcing ( = fE- fP, and the haline 

forcing r] = £{SE-SP) (or Fn and n), f = rr/rs and r = -PTO/TT are the control parameters 

of the model. The multiple equilibria occur when (<1. 

Thual and McWilliams (1992) showed that when f = 0.002 a frictional two box model 

and a frictional two-dimensional model show similar bifurcation structures. All the calcu- 

lations in this study were performed with £ = 0.002, and the effect of varying £ was not 

studied. In most calculations, C = 0.00577 so that 0 = 20°C in an equilibrium state when 

* = lOSv. and TT = 100 days, in dimensional units. Nakamura et al. (1994) showed that 

n « 3.5, but for simplicity n is set to 1, following Marotzke and Stone (1995). The effect of 

different n is discussed briefly later. 

In Fig. 3.2, the two mass transport laws are compared. The solid line is the mass 

transport for the geostrophic model, *G, and the dashed line is the one for the frictional 
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Figure 3.2: The meridional mass transport ^ versus Ap. The solid curve is for the 
geostrophic model, ^G, and the dashed line is for the frictional model, typ. The value 
of the present North Atlantic is shown as App. When Ap < Apc, d^c/dAp > d^p/dAp. 
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model, \&jr. Both scaling laws give the same mass transport, by definition, when Ap = App, 

which represents the meridional sea surface density gradient of the present North Atlantic. 

When the haline forcing, 77, becomes larger than the present value so that Ap < App, we 

find that ^c/^F > 1- Thus, the meridional heat and salt transports are greater in a model 

with the geostrophic mass transport law. 

The equilibrium solution of Eqs. 3.3, 3.4 and 3.5 can be determined graphically. Equi- 

librium Ap from equilibrium temperature and salinity, Eq. 3.3 with © = 0 and E = 0, 

is 

A"-e-s'7w\-7ifm' (3'6) 

if restoring salinity boundary condition is used. Similar approach can be applied to models 

with interactive condition. In Fig. 3.3, the dash-dotted curves represent the above equation 

with various 77. The dashed line is Ap from the mass transport of the frictional model, 

Eq. 3.4(b). The intersections between a dash-dotted curve and the dashed line are equilib- 

rium solutions of the frictional model for given parameters. The solid curve is Ap from the 

mass transport of the geostrophic model, Eq. 3.4(a). The intersections between the solid 

curve and a dash-dotted curve are equilibrium solutions for the geostrophic model for given 

parameters. 

In the geostrophic model, when 77 (haline forcing) is small (77 < 770), the solid curve and 

the dash-dotted curve meet at one point (point O) in the first quadrant; only a thermal 

mode solution is possible. As 77 increases, E becomes larger so that Ap decreases; the dash- 

dotted curve moves downward. When r] = r)0, the two curves meet at two points (points A 

and C); multiple equilibria occurs. As 77 increases further {rj0 < r) < rfrG), the two curves 

meet at three points; two in the first quadrant and one in the third quadrant. 

It is known that the thermal mode solution with smaller V is an unstable equilibrium, 

a saddle point (Stommel, 1961). As 77 increases further until 77 = rfrG, the unstable thermal 

equilibrium point moves up while the stable one moves down along the curve until they 

shrink to one point (point B) in the first quadrant. At the same time the intersection in 

the third quadrant moves downward.  When 77 becomes even larger (77 > 77rG), the dash- 
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Figure 3.3: Graphical representation of the equilibrium solutions of Eqs. 3.3, 3.4, and 
3.5 when restoring salinity boundary condition is used. During the calculation, C = 
0.00577 (20°C), T = 1 (rr = lOOdays) and f = 0.002. The quadrants labeled I-IV are sepa- 
rated by dotted lines. The dash-dotted curves are for Ap from the temperature and salinity 
equations (Eq. 3.6). The solid curve is Ap from the mass transport of the geostrophic 
model (Eq. 3.4(a)). The dashed line is Ap from the mass transport of the frictional model 
(Eq. 3.4(b)). 
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dotted curve and the solid curve meet only at one point in the third quadrant so only a 

haline mode is possible. The equilibrium solution of the frictional model shows qualitatively 

similar dependence on 77. 

Using the above features, we can determine the multiple equilibria regions analytically. 

In Fig. 3.4, the results from models with the restoring salinity boundary condition are 

presented. The constants used in the calculations are V = Vg + Vp = 5000fcm x 5000&m x 

4km, VP = 0.1V, VE = O.W, a = 2x lO-4^-1, 7 = 8x lO^ppt'1, r = 1 (TT = 100days). 

A geostrophic thermal mode is possible below the solid, and a frictional one below the dashed 

one. The upper bound of a thermal mode is the family of the point B of Fig. 3.3 in (£, 77) 

space. A haline mode is possible above the dotted line, which is the zero circulation line 

(Thual and McWilliams, 1992) 77 = ££, in both models. The line is the family of the point 

A of Fig 3.3 in a (£, 77) space. The domain common to both modes in each model is the 

multiple equilibria region where two opposite modes are possible under the same boundary 

conditions. 

The equilibrium \I> from the models with the restoring salinity boundary conditions is 

in Fig. 3.5. The solid curves are for the geostrophic model and the dotted curves are for 

the frictional model. The lower branches (<ä> < 0) are for the haline modes and the upper 

branches are for the stable thermal mode in each case. The middle branches (thin curves) 

are for the unstable thermal modes for both cases. The stable branches (thick curves) were 

obtained by integrating Eqs. 3.3, 3.5(a) and 3.4(a) or 3.4(b) over time numerically until they 

reached an equilibrium state while varying 77 by a small amount. Such numerical integration 

cannot yield unstable solutions, so the unstable branches were obtained by solving the steady 

versions of the equations numerically. 

As one can expect from Fig. 3.3, both the geostrophic model and the frictional model 

show qualitatively similar characteristics when the haline forcing varies. For fixed thermal 

forcing (Q, as the haline forcing (77) increases from zero, the salinity gradient (E) intensifies. 

The temperature also changes, but the strong negative feedback between the temperature of 

a box and the reference temperature prohibits significant change in temperature. Although 
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Figure 3.4: The domain for multiple equilibria is shown here as a region where the haline 
mode and thermal mode overlap. The dotted line is the zero circulation line and common to 
both models. This line is the family of the point A of Fig. 3.2 in (£, rj) space. It is the lower 
bound of the haline mode and of the multiple equilibria region. The solid curve is the upper 
bound of the thermal mode and of the multiple equilibria region with the geostrophic box 
model. This curve is the family of the point B of Fig. 3.2 in (£, 77) space. The dashed curve 
is the one with the frictional box model. The multiple equilibria region for the geostrophic 
model has vertical hatches, and that for the frictional model has horizontal hatches. 
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Figure 3.5: The mass transport * versus the haline forcing r), with £ = 0.00577 and r = 1. 
The solid curves are for the geostrophic model and the dotted curves are for the frictional 
model. The arrows indicate the direction of change in each case. The middle branches (thin 
curves) in each case are for the unstable thermal modes. 
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the temperature gradient is larger, the change in the density gradient is mainly controlled 

by the salinity gradient. 

The intensified E weakens the density gradient so that \I> becomes weaker gradually along 

the stable thermal mode branch until 77 = rfr, where TJT is the catastrophic transition point 

from a thermal mode circulation to a haline mode. Note that the geostrophic model shows 

significantly higher rfr- At the transition point $ > 0 so that the temperature gradient 

is larger than the salinity gradient. After the transition, the salinity gradient becomes 

stronger than the temperature gradient. The circulation follows the haline mode branch as 

77 increases beyond rfr. 

When 77 declines from a value larger than TJT, the salinity gradient gradually weakens. 

The buoyancy forcing weakens so that the strength of the circulation (|*|) becomes weaker 

along the haline mode branch until, in the frictional model, it approaches the zero circulation 

line (77 = 77o), where the salinity gradient and the temperature gradient are exactly the 

same so that the circulation stops. If the haline forcing weakens further, a haline mode 

is not possible so that the circulation reverses to a thermal mode catastrophically. In the 

geostrophic model, the haline mode becomes unstable and the circulation reverses to the 

thermal mode before it reaches the zero circulation line. Its effect to the multiple equilibria 

region is small within the parameter of interest for the present oceans, so it will not be 

discussed. 

Based on a similar frictional box with fresh water flux, Huang et al. (1992) argue that 

the present North Atlantic is close to the transition point, 777*, so that a small increase in 

the polar fresh water flux such as rain can reverse the present thermohaline circulation to 

a haline mode. If the frictional model is used, the present ocean of the model (point P) is 

close to the transition point rfrF, as shown in Fig. 3.5, so that one can draw a conclusion 

similar to that of Huang et al. (1992). In contrast, if the geostrophic model is used, one 

could conclude that it is unlikely that a small increase in the haline forcing (or fresh water 

flux) causes a transition from a thermal mode circulation to a haline mode one. 

Joyce (1991) used a two-hemisphere model with the frictional mass transport law. When 
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an asymmetric sinusoidal perturbation in the salinity boundary condition was applied to 

a stable thermal mode circulation, which represents the present oceanic circulation, an 

oscillation between a thermal mode and a haline mode with a frequency different from that 

of the perturbation was found. He suggested that this oscillation might be related to the 

glacial oscillation. Thual and McWilliams (1992) showed that when f < 1 the circulation 

in a complicated box model can be treated as a linear superposition of a two box model, so 

Joyce's (1991) calculation can be compared to that of the present study. The oscillations 

suggest that the amplitude of the perturbation is comparable to the width of the multiple 

equilibria region of his model. Since the geostrophic model shows a significantly wider 

multiple equilibria region than that of the frictional model, a version of Joyce's model with 

the geostrophic scaling law is unlikely to show such oscillations between a thermal mode 

and a haline mode under the same perturbation. 

In Fig. 3.6, a hysteresis diagram from models with the interactive condition are presented 

while considering Fi to be an external parameter. By comparing Fig. 3.6 and Fig. 3.5 one 

can see that the result from models with the interactive condition is qualitatively similar 

to those with the restoring salinity boundary condition. Multiple equilibria, two thermal 

mode and one haline mode, are possible under the same boundary conditions. The thermal 

mode of weaker circulation strength (thin dashed curve) is unstable. Increase in the fresh 

water flux, which is equivalent to intensification in the haline forcing, can switch a thermal 

mode to a haline mode. The model with the geostrophic scaling law requires higher fresh 

water flux for a thermal mode to switch to a haline mode. 

When TS -> oo, which is a condition for a proper restoring salinity boundary condition 

(Welander, 1986), £ -> 0. The zero circulation line, 77 = fC, which is the lower bound of the 

multiple equilibria region for models with the restoring salinity boundary condition as in 

Fig. 3.4, approaches 7/ = 0. In this limit the cusp of the frictional model with the restoring 

salinity boundary condition at (Co,Vo) = (£[1 - £]~\£2[1 - £]_1) (Thual and McWilliams, 

1992) approaches the origin (0,0). At this cusp, the upper bound of the multiple equilibria 

and the zero circulation line meet as in Fig. 3.4. If the salinity restoring boundary condition 
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Figure 3.6: The mass transport \& versus F\ with r = 1. The solid curves are for the 
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is used properly as Welander (1986) suggested, a haline mode is possible if the haline forcing 

and the thermal forcing are in opposite direction as in models with the interactive condition 

(as in Fig. 3.6) or the fresh water flux (Huang, et al, 1992). 

As Nakamura et al. (1995) and Marotzke and Stone (1995) show, the change in the 

salinity boundary condition from the restoring one to the interactive condition, moves the 

upper catastrophic transition points toward the present state. In the geostrophic model, 

the effect is small so that the transition point is still quite far away from the present state. 

In the frictional model, the effect is strong so that a small change in the fresh water flux 

could drive the present circulation to a haline mode. Thus, the mass transport relation has 

stronger effect on the stability of thermohaline circulation than the parameterization of the 

air-sea fresh water exchange. This comparison is, however, qualitative. 

Using a linear stability analysis, we can study processes that affect the transition point 

or the stability of a circulation quantitatively. Since we know that the transition point from 

a haline mode to a thermal mode is either zero circulation line, rj = ££ (with the restoring 

salinity boundary condition) or F\ = 0 (with the interactive condition), a linear stability 

analysis was done with a thermal mode circulation in each case. 

Apply a small perturbation (6', E') to an equilibrium thermal mode circulation (6, E) 

without changing the parameters related to the boundary conditions such as C, and rj (or 

F\). In the geostrophic model with the restoring salinity boundary condition, 6 and E 

satisfy 

C - 6(r + ¥) = 0, and T? - E(T£ + #) = 0. 

The equations for the perturbation variables from Eq. 3.3 are as follows: 

0'   =   -{0'(r+ *) + ©!>#'} 

E'   =   -{E'(T£ + $) + EW}. (3-7) 

The mass transport \I> = * + *&' also can be written as 

*G   =   A{(G-E) + (0'-E')}1/3 

=   A(0 - E)1/3 + \x(0 - E)"2/3(0' - E') + O(0', E')2. 
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Thus, 

\p' = JA
3
* 

2(e' - s'), and * = A(e - s)1/3. (3.8) 

If we rewrite Eq. 3.7 using a matrix form, 

\ 

where 

with 

A = 

=   A 

a   b 

c   d 

(3.9) 

a = -(i+.i* + \\3ev 2) 

c = -^A3E¥-2 

1    , _o 
b = -A3G* 2 

d = -(rf+ tt- JA3S*~2). 
(3.10) 

If we apply the same procedure to other models, the perturbation equation satisfies Eq. 3.9, 

while A for each case is as follows: 

A = 

A = 

/ 

V 

-T - * - e*        e* 

-s* -rf-tf + Etf 

(3.11) 

frictional model 

with restoring 

geostrophic model 

with interactive condition 

frictional model 

with interactive condition \       Fi — S*        —\& + £\I> 

The matrix A and its eigenvalues represent the feedback and stability of each model. 

Since the sum of the two eigenvalues of a model is 

-l-#--A3e* 

Fi - JA
3
S*~

2 

-r - * - e* 
A = 

±A3e*-2    \ 

-#+-A3£# 
o 

trace (A) < 0, 

if the product of the two eigenvalues 

det(A) = ad-bc>0, 

the eigenvalues are negative and the equilibrium solution of the model is stable. If not, one 

of the eigenvalues is positive and the equilibrium solution is unstable to the perturbation. 
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When commonly used temperature restoring time scale, which is TT ~ 100 days, and 

equilibrium thermal mode solutions are applied to the matrix A, then a » b, c, d and 

a w — r « — 1 in all four models. Thus, a thermal mode circulation is stable if 

det(A) w -d > 0. (3.12) 

The stability condition d < 0, in fact, holds when r > 0.1, i.e., ry > 1000 days. In this 

limit, in the models with the interactive condition, the stability is independent of the salinity 

boundary condition, since F\, the moisture transport coefficient, is in c. 

As in Walin (1985), for a moment assume that the effect of the salinity restoring bound- 

ary condition — r£, is negligible. (The term — r£ < 0 so it stabilizes circulation and the 

effect is discussed later more detail.) The stability condition is independent of the salinity 

boundary conditions at all in all four models; it is completely determined by the advection 

related properties. The advection of the salinity perturbation due to the equilibrium circu- 

lation —* makes negative contribution to d so it stabilizes the circulation. The advection of 

the equilibrium salinity gradient due to the circulation driven by the salinity perturbation 

(A3S* in geostrophic models or E in frictional model) makes positive contribution to d\ 

this is the only destabilizing mechanism. 

The stability condition, — d > 0, shows that the geostrophic thermal mode is stable 

when the density ratio R, which is the ratio of the meridional salinity difference S to the 

meridional temperature difference G, satisfies 

B=|<Äc = 5j (3.13) 

regardless of the salinity boundary conditions. Note that the circulation becomes unstable 

before the salinity gradient becomes as strong as the temperature gradient, i.e., R= 1. One 

can easily show that when * ~ Ap1/", a thermal mode is stable to a small perturbation if 

R < n/(n + 1). Thus, the frictional thermal mode is stable when 

R < Rc = —, 
2 

as Wahn (1985) and Marotzke (1990) show. Tziperman et aUs (1994) frictional four- 

box model shows that the critical value would decrease to about 0.45 mainly due to the 
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increase in the resolution. Such a small difference may not be significant in such simple 

models, especially when we are to apply the result to more complicated systems such as the 

oceans or 2 or 3-dimensional numerical models. The geostrophic model, however, yields a 

critical value that is 50% larger than that from the frictional one, so the difference must be 

significant. 

It is easy, in fact, to find R that satisfies det(A) > 0 for each model. In Fig. 3.7, a 

curve (Rc), which satisfies det(A)=0, is presented for several different cases. To the left of 

a curve det(A) > 0 so the model is stable. To the right of a curve det(A) < 0 so the model 

is unstable. Since the strong negative feedback between the sea surface temperature and 

the atmosphere does not allow much change in temperature, 6 is fixed to 60 = 0.00577. 

Although the temperature restoring time TT is varied, £ — TT/TS is fixed to 0.002. In the 

figure, the results from the models with the interactive feedback in which Hs ~ JP3.S6
3-5 

as in Nakamura et al (1994) are included. Since FiG0 = FnG^, H'„ ~ nFnQ
a~lQ' = 

njP„(6/0o)n-1O', where 0O is the meridional temperature gradient of the present model 

ocean. By replacing Fi in c of A to nFi(@/Q0)n~1 with n = 3.5, we can get the curves g\ 

and /l. 

The models with the geostrophic mass transport law show greater stability than those 

with the frictional law when the same salinity boundary conditions are used. The largest 

contribution to det(A) is from the competition between the advection of the salinity pertur- 

bation by the equilibrium circulation and the advection of the mean salinity gradient due to 

the circulation induced by the salinity perturbation (—rd for the model with the interactive 

condition, or —T((1 + T£) for the model with the restoring salinity condition). Thus, change 

in the mass transport law makes the largest contribution to the stability; the stabilizing 

effect due to the geostrophic mass transport law is stronger than any other feedbacks in 

the models. The faster circulation in the geostrophic model weakens the meridional salinity 

gradient and removes the salinity anomalies more effectively. The water in each box does 

not have enough time to obtain a strong enough salinity gradient. A stronger haline forcing 

is required to reverse a thermal mode circulation in the geostrophic model. 
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Figure 3.7: Stability diagram. A curve denotes Rc that makes det(A) = 0 for a certain 
model as r varies while f = TT/TS = 0.002 and 0 = 90 = 0.00577, which is equivalent 
to 20°C, and Fi = 1.38 x 10~3. To the left of a curve, det(A) > 0 so the thermal mode 
circulation of the model is stable. To the right, det( A) < 0 so the thermal mode circulation 
is unstable. Note that the same equilibrium solutions are compared so that the boundary 
forcings are not necessarily the same for each case. The results from the models with 
the geostrophic scaling law are labeled using the character 'g', and those with the frictional 
scaling laws are labeled using the character 'f. The results of the models with the interactive 
condition with n = 3.5 are labeled using '1' and with n = l using '2', those with fixed (E-P) 
(or the interactive condition with n = 0) using '3', and those with the restoring boundary 
condition using '4'. 

119 



When T > 0.1, in Fig. 3.7 the critical values with the restoring salinity boundary condi- 

tion (/4 and g4) show greater stability than those with fixed (E—P). Within this range of T, 

det(A) and the stability are mostly determined by ad, which becomes larger as r increases. 

Thus, the interactive condition, whose effect is in c, does not make much contribution to the 

stability regardless of n. The term a is independent of the salinity boundary conditions, so 

the difference in the stability is solely due to T£ = 100 days/rs, which represents the effect 

of salinity restoring and is neglected in the previous analysis, in d. The difference becomes 

smaller as r decreases, since £ is fixed so that TS increases and the dependence of salinity 

boundary condition on the sea surface salinity weakens. In this study £ = TT/TS = 0.002 

so it is about two orders of magnitude smaller than commonly used values in other studies, 

but the effect is significant. Such an artificial stability does not exist in a system whose 

salinity boundary condition is independent of salinity such as the real oceans, models with 

fixed (E-P) or the interactive condition. 

In Fig. 3.7, Rc decreases (/l and gl) or increases (all the rest) depending models, 

when r varies. One might conclude that the temperature restoring could be stabilizing or 

destabilizing depending on the configuration of a model and the restoring time scale. We 

can rewrite the stability condition, det(A) > 0, as follows: 

be 
d + r£   > h T£ (the models with the restoring salinity b.c.), or 

be (3-14) 

d   >    — (the models with the interactive condition), 
a 

where a, b, c and d are given in Eq. 3.10 or Eq. 3.11. 

For the temperature restoring to change its role in the stability, the left or right hand side 

of the above equation has to change its sign as r varies. The left hand sides of the equation, 

b and c are independent of r. The term a (and r£ for the models with salinity restoring 

boundary condition) is dependent upon r so the magnitude changes as r varies, but the signs 

remain the same within the parameter range of this study, 100 days < TT < 10000 days. As 

the name suggests, the temperature restoring boundary condition always restores a system 

to the reference temperature. As the temperature restoring time scale becomes larger, its 

effect becomes smaller; but it remains as a stabilizing process. 
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In Eq. 3.14, as r declines a becomes smaller so that the right hand side becomes larger. 

In models with the salinity restoring boundary condition, be < 0 and a < 0. So bc/a, which 

is the advection of the temperature gradient or the advection induced by the temperature 

gradient, becomes a larger positive number, and stabilizes circulation. At the same time, 

however, T£ decreases. Since it is larger than bc/a if r > 0.1 or so, the right hand side 

shows minimum around r « 1 and so does Rc (curves g4 and /4 in Fig. 3.7). 

As Nakamura et al. (1994), Marotzke and Stone (1995), and Marotzke (1996) show, 

the models with the interactive condition (curves /l and /2, or gl and g2) yields lower 

stability than those with fixed (E — P) (curves /3 or g3), if the same mass transport law is 

used. The positive feedback due to the interactive condition becomes stronger as n increases 

(Marotzke, 1996). For a parameter appropriate for the present North Atlantic, the models 

with n = 3.5 (curves /l and gl) show lower stability than those with n = 1 (curves /2 and 

or #2). Furthermore when n = 1, c < 0 and bc/a > 0. The right side of Eq 3.14 increases 

as T decreases and so does Rc (curves g2 and /2 in Fig. 3.7). When n = 3.5, the effect of 

the interactive condition is large enough to make c > 0. Thus the right hand side decreases 

as T increases and so does Rc (curves gl and /l). 

The air-sea heat fluxes versus 77 from the models with the restoring salinity boundary 

conditions are shown in Fig. 3.8. The fluxes are calculated from the stable equilibrium 

temperature and salinity in the polar boxes, which were obtained during the calculation 

for Fig. 3.5. The lower branches are for the thermal modes and the upper ones are for the 

haline modes. In an equilibrium, the boundary fluxes are the same as the meridional fluxes. 

A haline mode circulation is much slower than a thermal mode circulation. The advection 

of heat from the equator to the polar box is significantly reduced so that the surface heat 

flux is low. 

The North Pacific is about two times wider than the North Atlantic. If the heat transport 

processes are the same in the two oceans, the meridional heat transport of the North Pacific 

must be about twice as large as that of the North Atlantic. Estimations using hydrography, 

however, show that the heat transport of the North Pacific (Bryden et al, 1991) is about 
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Figure 3.8: Surface heat fluxes versus 77 in the polar box when £ = 0.00577 and r = 1. The 
solid curves are for the geostrophic model and the dashed ones are for the frictional model. 
The lower branches are for the thermal modes and the upper branches are for the haline 
modes. A negative value means heat flux from the ocean to the atmosphere. 

half that of the North Atlantic (Bryden and Hall, 1980; Hall and Bryden, 1982). This might 

be evidence that the North Pacific is thought to be in a haline mode (Warren, 1983), with 

smaller meridional heat flux and higher surface salinity gradient than those of the North 

Atlantic. 

When the haline forcing changes, the geostrophic model shows smaller change in the 

surface heat flux as can be seen in Fig. 3.8. When Ap > Apc, the mass transport in the 

geostrophic model is less sensitive to the change in Ap, which could be induced by change 

in 77, as shown in Fig. 3.2. Subsequently, the meridional heat transport and the air-sea 

heat exchange are less sensitive to the change in Ap or 77 as shown in Fig. 3.8. Before 

the transition, the heat flux is similar in both models. After the transition, however, the 

stronger circulation of the geostrophic model allows larger meridional heat flux and thereby 

the air-sea heat flux. Thus, the geostrophic model shows smaller change in surface heat 

flux during the catastrophic transition, although it is very unlikely that the thermohaline 

catastrophe occurs in the geostrophic model. 

The changes in \I> and the heat flux during the catastrophic transition from a thermal 

mode to a haline mode in the models with the restoring salinity boundary condition are 
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shown in Fig. 3.9. The solid line is for the geostrophic model and the dotted line is for 

the frictional model. At t < 0, the geostrophic model is in a stable thermal mode with 

77 = 1.98 x 10-5, and the frictional one with 77 = 1.44 x 10~5. At t = 0, 77 was increased by 

0.12 x 10~5 in both cases to allow the catastrophic transitions from the thermal modes to 

haline modes. In both cases, the mass transports initially decrease slowly while maintaining 

thermal modes. Then the circulation reverses to haline modes suddenly. 

The transition time scale of the frictional model is about 800 years, which is comparable 

to that of Huang et aUs (1992) frictional model with the natural salinity boundary condition. 

The transition in the geostrophic model is about twice as fast as that in the frictional model. 

As Ap -> 0, the geostrophic mass transport becomes larger relative to the frictional one so 

that the transition is faster in the geostrophic model. During the reversal, |\I/| w 0 so that 

the temperature of each box becomes very close to its restoring temperature. The heat flux 

becomes very small. After the reversal, the circulation redistributes the heat so that the 

air-sea heat exchange occurs again. The sudden reversal in the circulation accompanies a 

sharp peak in heat flux, whose width is related to the duration of the reversal. 
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Figure 3.9: Time evolution during the catastrophic transition. The solid line is for the 
geostrophic model and the dotted line is for the frictional model. In both cases C, = 0.00577 
and T — 1. In the geostrophic model, rj was changed from 1.98 x 10-5 by 0.12 x 10-5 at 
t = 0. In the frictional model, r} was changed from 1.44 x 10~5 by 0.12 x 10-5 at t = 0. 
One hundred days is equivalent to a nondimensionalized unit time. 
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3.3    Discussion and Conclusion 

A two-box model using a mass transport law based on geostrophy and advective diffusive 

heat balance (geostrophic mass transport law) has been developed. The stability of a 

thermal mode (high latitude sinking) circulation against perturbation in salinity has been 

studied. The results are compared to those from a model using a traditional frictional 

law. The effects of the air-sea fresh water exchange parameterization on the stability of 

thermohaline circulation also have been studied and compared to those due to the mass 

transport law parameterization. 

A simple linear stability analysis shows that the stability of a thermal mode is mostly 

determined by the competition between the mean advection of the salinity anomaly, which is 

a stabilizing process, and the advection of the mean salinity gradient due to the circulation 

induced by the salinity anomaly, which is the strongest destabilizing process. In a model 

with the geostrophic transport law, the circulation is stronger than that in a model with the 

frictional law. The stronger circulation reduces the meridional salinity gradient and removes 

the salinity anomaly effectively. Thus, the models with the geostrophic transport law show 

significantly greater stability. Some studies based on the frictional model suggested that 

the present North Atlantic is close to the stability boundary so that an increase in the polar 

fresh water flux might cause a catastrophic change in the circulation. The result from the 

geostrophic model, however, suggests that the present ocean is quite far away from the 

stability boundary so that such a change is unlikely to occur. 

A similar argument can be applied to a zonally averaged thermohaline circulation model. 

While averaging the equation of motion, information on the zonal structure, which drives 

a meridional circulation, is lost. To close the equation, some assumptions on the zonal 

structure were made. For example, in Marotzke et al. (1988), a local and linear relation 

between the mean meridional velocity and the meridional pressure gradient, 

A*VZZ=Py, 

was assumed, with a large value of viscosity A* adopted to reduce the transport to the 
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present oceanic value. The frictional balance is also used in other 2-dimensional thermoha- 

line circulation models such as Thual and McWilliams (1992) and Quon and Ghil (1992). 

Thus, the results of those models may be different from those of the geostrophically balanced 

oceans. 

The stability analysis also show that a restoring salinity boundary condition stabilizes 

a thermal mode circulation significantly when TT < 3 years. Such stability does not exist in 

the real world, however. The artificial stability becomes stronger as the salinity restoring 

time scale TS becomes smaller. In this study, the ratio of TT, the temperature restoring 

time scale, to TS, £ = TT/TS = 0.002. It is about two orders of magnitude smaller than 

those in similar studies, but its effect is significant. The effect disappears as TS —> oo, 

which is a condition for a proper salinity restoring boundary condition (Welander, 1986), 

so that the boundary condition for salinity becomes independent of the surface salinity. 

Salinity boundary conditions such as natural boundary condition (Huang, 1993) or virtual 

salt fluxes from fixed (E-P) or the interactive condition do not introduces such artificial 

stability, obviously. 

In many two or three dimensional numerical studies about the stability of thermohaline 

circulation, a model was initialized using a restoring salinity boundary condition with 1 < 

£ < 0.1. After the circulation reaching an equilibrium state, virtual salt fluxes at the sea 

surface were estimated. When the restoring boundary condition was replaced by the virtual 

salt flux diagnosed, the circulation showed rapid transition to different states, in some cases. 

It has been argued that such transition suggests that the thermohaline circulation is unstable 

under mixed boundary conditions (a restoring boundary condition for temperature and a 

flux boundary condition for salinity). The change in the salinity boundary condition removes 

the unnatural stability is externally. Thus, it is not clear that the transition induced by the 

external removal of the artificial stability or instability in the circulation. 

A restoring temperature boundary condition always tries to restore temperature to a 

reference value. Thus, it is always stabilizing process regardless of the restoring time scale, 

TT, and salinity boundary conditions. As TT becomes larger, its stabilizing effect becomes 
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less dominant so that other processes begin to modify the stability. The modifications are 

small, especially when TT < 3 years and not significant. 

The models and the real oceans are so different that one can ask what is the proper 

choice of the tuning parameters App and *p, and how does the stability and the bifurcation 

structure depend on the choice. As evident from the preceding analysis, the stability of 

a thermal mode is mainly determined by the advection of the salinity gradient. Although 

App and $p of the study are just one realization of the real oceanic values, they are known 

to well within the correct order of magnitude. As long as ^a is significantly larger than typ 

when Ap < App, the thermal mode of a model with the geostrophic mass transport law is 

significantly more stable than that of a model with the frictional mass transport law. 

Although we cannot apply the model to the oceans directly, we can roughly estimate 

the stability parameter of the oceans. The surface temperature and salinity distribution 

of the North Atlantic give @N.A. ~ 20° C and EN. A. sa 2ppt so RN.A. ~ 0.4. In the North 

Pacific, QN.P. ~ 20°C and EN.P. « Sppt so RN.P. « 0.6. If we use the frictional model, both 

stability parameters are close to the critical value 0.5 so we may conclude that both oceans 

are close to the catastrophic transition or they are in haline mode as Walin (1985) and 

Huang et al. (1992) argue. If we use the geostrophic model, RN.A. is significantly smaller 

than the critical value 0.75 so we may conclude that the thermohaline circulation of the 

North Atlantic is stable to a small change in the fresh water flux. In the case of the North 

Pacific, RN.P. is closer to the critical value so we may conclude that the North Pacific is 

close to the transition or in a haline mode. (During a haline mode R > 1 always regardless 

of model configuration so we can easily see the limitation of the model.) We also may argue 

that this is consistent with Warren (1983) who showed that the fresh flux to the northern 

North Pacific prevents the deep water mass formation so the direction of the thermohaline 

circulation in the ocean is opposite to that of the North Atlantic. 
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was 

Chapter 4 

Summary and Conclusion 

A convection experiment was done in a rotating rectangular tank. Buoyancy forcing 

applied by differentially heating the bottom of the tank using an electrical heater of constant 

heat flux and a cooling plate of constant temperature. The experiment was equivalent to 

an upside-down /-plane ocean. 

In an equilibrium, the heat flux due to the heating pad was equivalent to the merid- 

ional heat flux (heat flux from the heating pad to the cooling plate due to the convective 

circulation) within the experimental error. Since the meridional heat flux was a known ex- 

perimental parameter, the temperature measurement with an array of thermistors allowed 

us to study scaling laws for the meridional heat flux for the first time in such a labora- 

tory convection experiment. Scaling laws for a thermal thermal boundary layer were also 

studied. 

A thin thermal boundary layer along with an interior of almost homogeneous tempera- 

ture was observed, in agreement with other convection experiments with differential bottom 

heating. The comparison between the experiment and scaling laws developed earlier showed 

that most of the meridional heat flux was due to the meridional geostrophic flow with mi- 

nor correction from the bottom friction. The same applied to the thermal boundary of the 

experiment. 

Zonal temperature sections and flow visualization showed that over the cooling plate, the 
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cold water circulated anti-cyclonically and the warm water above the cold water circulated 

cyclonically. The flow pattern is consistent with a simple balance between the squashing (in 

the cold water) or stretching (in the warm water) of a vortex column and the dissipation of 

vorticity in the bottom factional layer (in the cold water) or in the side wall factional layer 

(in the warm water). Most of the cold water flowed toward the hot end along the wall to 

the left (looking from the hot end to the cold end). The hot flow toward the cold end was 

along the center of the tank but most of that water returned to the hot end along the side 

walls. The zonal temperature sections show that the flows satisfy geostrophy. 

The estimation of the meridional heat transport in the North Atlantic from hydrographic 

data (Bryden and Hall, 1980; Hall and Bryden, 1982) is compared with that using the 

geostrophic scaling law. The meridional heat transport of the North Pacific is also available 

(Bryden et. al., 1991), but deep water mass formation does not occur there (Warren, 1983). 

It is not appropriate for comparison. 

The estimation of the total meridional heat transport in the North Atlantic across 25° N 

using hydrographic data is 1.22 x 10l5W (Bryden and Hall, 1980; Hall and Bryden, 1982). 

If the contribution added due to the surface Ekman flux driven by the wind, which is 

0.42 x 10l5W, is considered, the estimation becomes 0.8 x 1015W. If the canonical oceanic 

values related to the physical properties of the ocean, lx = 5000A;m, ly = 5000km, d = 4&m, 

K — lcm2/sec, and AT = 20°C are substitute to the scaling laws, the Ekman scaling 

law gives H = 0.11 x 1015W and the geostrophic one gives H = 1.3 x 1015W. If the 

proportionality constant from the experiment, which is 0.26, is applied, the geostrophic 

scaling law predicts H = 0.35 x 1015W. The value is half of the estimated heat flux in the 

North Atlantic. Considering that there are heat fluxes across the equator in the Atlantic 

and one due to the wind driven gyres (and no equivalence in the experiment), which are 

included in that value of 0.8 x 1015W, the prediction from the experiment is comparable to 

the estimated value in the North Atlantic. 

The estimations of the abyssal eddy diffusivity from microstructure measurement shows 

that K varies spatially (Toole et. al, 1994), although it is assumed uniform throughout this 
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study. The estimated average value, furthermore, is 0.1cm2s_1 to 0.5cm2s-1 and smaller 

than that used in the estimation of the North Atlantic meridional heat transport. The 

estimation of K, however, becomes larger up to 2cm2s~l near slopes in some regions. In the 

thermocline layer or the western boundary, the motion is more active so that turbulent and 

eddy diffusivity would intensify. A proper value of K is not available yet so it must be proper 

saying that when K « lcm2s~l within upper 1000m or so of the oceans, the geostrophic 

scaling law predicts meridional heat transport comparable to the observed one in the North 

Atlantic. 

The thermocline depth from the geostrophic scaling law is about 200m so it is much 

smaller than the oceanic one. The surface wind stress mainly determines the thermocline 

depth so that the geostrophic scaling law cannot be used for that purpose. When the typical 

oceanic values as described in the previous paragraph are used in the Ekman scaling law in 

Table 2.1, it gives an about 30km deep thermocline, which is far larger than the depth of 

the oceans. 

Naturally, this experiment is a very idealized model of the oceanic convective circulation. 

We do not claim that the geostrophic scaling applies in detail to the oceans, however, it 

may have some important use in climate modeling. To demonstrate one application, the 

stability of the thermohaline circulation was studied using a two-box model. Since the low 

resolution of such a model does not allow one to include the Earth's rotation explicitly, the 

effect of the rotation, which has been ignored previously in this problem, was included by 

introducing the meridional mass transport from the geostrophic scaling law. The results 

are compared with those obtained with the traditional frictional scaling law based on the 

balance between a meridional pressure gradient and frictional dissipation. 

The geostrophic model is significantly more stable than the frictional model under per- 

turbations in salinity, suggesting the thermohaline catastrophe is less likely to occur in the 

present North Atlantic if the effects of the Earth's rotation is considered. As the polar salin- 

ity decreases the geostrophic mass transport becomes relatively stronger than the frictional 

transport.   In the former, a salinity anomaly is removed more rapidly so a significantly 
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higher perturbation in the polar salinity is required before the onset of the thermohaline 

catastrophe. The heat accumulated in the equatorial oceans is redistributed more effectively 

so that the model shows a smaller change in the climate as the buoyancy forcing varies. 

Using a simple linear stability analysis, the effects of various feedbacks were also studied. 

The feedback due to the meridional mass transport is the strongest, thus has the strongest 

effect on the stability. The analysis also shows that a salinity restoring boundary condition 

significantly stabilizes a thermal mode circulation unless the salinity restoring time scale, 

TS, is several orders of magnitude larger than the temperature restoring time scale, •pp. 

Other feedbacks affect the stability significantly only when vr becomes larger than about 3 

years. 

The results of the box model show that we have be careful about the parameterization 

of physical processes especially in a simple model. 
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